Total Glutathione Assay

Total Glutathione Assay
  • Measures total glutathione (oxidized and reduced)
  • Sensitive detection as low as 8 nM
  • Suitable for use with serum, plasma, saliva, urine, tissue extracts, and mammalian or plant cell lysates


Frequently Asked Questions about this product

General FAQs about Oxidative Stress

Email To BuyerPrint this PageCopy Link

Please contact your distributor for pricing.

OxiSelect™ Total Glutathione (GSSG/GSH) Assay Kit
Catalog Number
100 assays
Manual/Data Sheet Download
SDS Download
Product Details

The OxiSelect™ Total Glutathione Assay Kit is a quantitative assay for measuring the total glutathione content within a sample (GSH/GSSG).  Glutathione Reductase reduces oxidized glutathione (GSSG) to reduced glutathione (GSH) in the presence of NADPH.  Subsequently, the  chromogen reacts with the thiol group of GSH to produce a colored compound that absorbs at 405 nm.  The total glutathione content in unknown samples is determined by comparison with the predetermined glutathione standard curve.  The rate of chromophore production is proportional to the concentration of glutathione within the sample.  The rate can be determined from the absorbance change over time.  Metaphosphoric acid is provided to remove interfering proteins or enzymes from samples.

GSSG Standard Curve. OD 405nm versus incubation time as a function of GSSG concentration.

Recent Product Citations
  1. Son, E.S. et al. (2020). Effects of antioxidants on oxidative stress and inflammatory responses of human bronchial epithelial cells exposed to particulate matter and cigarette smoke extract. Toxicol In Vitro. doi: 10.1016/j.tiv.2020.104883.
  2. Palanisamy, A. et al. (2020). In utero exposure to transient ischemia-hypoxemia promotes long-term neurodevelopmental abnormalities in male rat offspring. JCI Insight. 5(10):133172. doi: 10.1172/jci.insight.133172.
  3. Bona, N. et al. (2020). Oxidative stress, inflammation and disease activity biomarkers in lupus nephropathy. Lupus. doi: 10.1177/0961203320904784.
  4. Mavangira, V. et al. (2020). 20-hydroxyeicosatetraenoic acid alters endothelial cell barrier integrity independent of oxidative stress and cell death. Prostaglandins Other Lipid Mediat. doi: 10.1016/j.prostaglandins.2020.106425.
  5. Sembratowicz, I. et al. (2020). The effect of diet with fermented soybean meal on blood metabolites and redox status of chickens. Annals of Animal Science. doi: 10.2478/aoas-2020-0009.
  6. Nguyen, S. et al. (2020). Reduction of oxidative stress markers in the corpora cavernosa and media of penile dorsal artery in middle-aged rats treated with COMP-4. Int J Impot Res. doi: 10.1038/s41443-020-0233-9.
  7. Abdel-Moneim, A.E. et al. (2020). Growth performance, hemato-biochemical indices, thyroid activity, antioxidant status, and immune response of growing Japanese quail fed diet with full-fat canola seeds. Trop Anim Health Prod. doi: 10.1007/s11250-020-02200-1.
  8. El-Boshy, M. et al. (2020). Vitamin D3 and calcium cosupplementation alleviates cadmium hepatotoxicity in the rat: Enhanced antioxidative and anti-inflammatory actions by remodeling cellular calcium pathways. J Biochem Mol Toxicol. doi: 10.1002/jbt.22440.
  9. Aniss, N.N. et al. (2020). Anti-arthritic Effects of Platelets Rich Plasma and Hyaluronic Acid on Adjuvant-induced Arthritis in Rats. International Journal of Pharmacology. 16:33-46. doi: 10.3923/ijp.2020.33.46.
  10. Nguyen, Y.T.K. et al. (2019). Structural and Functional Analyses of Human ChaC2 in Glutathione Metabolism. Biomolecules. 10(1). pii: E31. doi: 10.3390/biom10010031.
  11. Cui, R. et al. (2019). Exendin-4 Protects Human Retinal Pigment Epithelial Cells from H2O2-Induced Oxidative Damage via Activation of NRF2 Signaling. Ophthalmic Res. doi: 10.1159/000504891.
  12. Bhattamisra, S.K. et al. (2019). Effect of geraniol and clarithromycin combination against gastric ulcers induced by acetic acid and Helicobacter pylori in rats. Phcog Res. 11:356-62.
  13. Ehnert-Russo, S.L. et al. (2019). Mercury Accumulation and Effects in the Brain of the Atlantic Sharpnose Shark (Rhizoprionodon terraenovae). Arch Environ Contam Toxicol. doi: 10.1007/s00244-019-00691-0.
  14. Ognik, K. et al. (2019). The effect of a rat diet without added Cu on redox status in tissues and epigenetic changes in the brain. Annals of Animal Science. doi: 10.2478/aoas-2019-0075.
  15. Abdel-Moneim, A.E. et al. (2019). Effect of in Ovo Inoculation of Bifidobacterium spp. on Growth Performance, Thyroid Activity, Ileum Histomorphometry, and Microbial Enumeration of Broilers. Probiotics Antimicrob Proteins. doi: 10.1007/s12602-019-09613-x.
  16. Choi, J.S. et al. (2019). Evaluation of microplastic toxicity in accordance with different sizes and exposure times in the marine copepod Tigriopus japonicus. Mar Environ Res. doi: 10.1016/j.marenvres.2019.104838.
  17. Iqbal, S. et al. (2019). Antioxidant Enzymes Profile During Cryopreservation of Nili Ravi Buffalo Bull Spermatozoa (Bubalus Bubalis). The J. Anim. Plant Sci. 29(6):2019.
  18. Noro, T. et al. (2019). Normal tension glaucoma-like degeneration of the visual system in aged marmosets. Sci Rep. 9(1):14852. doi: 10.1038/s41598-019-51281-y.
  19. Mazen, G.M.A. et al. (2019). Comparative Study to Evaluate the Efficacy of Hydrogen Sulfide Separately or in Combination with some Antioxidants against Myocardial Dysfunction in Irradiated Rats. Arab J. Nucl. Sci. Appl. 52(4):167-174. doi: 10.21608/ajnsa.2019.6225.1137.
  20. Karagenç, N. et al. (2019). Transfer of mouse blastocysts exposed to ambient oxygen levels can lead to impaired lung development and redox balance. Molecular Human Reproduction. doi: 10.1093/molehr/gaz052.
  21. Zhou, Z.B. et al. (2019). Up-regulation of heat shock protein 27 inhibits apoptosis in lumbosacral nerve root avulsion-induced neurons. Sci Rep. 9(1):11468. doi: 10.1038/s41598-019-48003-9.
  22. Carissimi, C. et al. (2019). Functional analysis of gut microbiota and immunoinflammation in children with autism spectrum disorders. Dig Liver Dis. pii: S1590-8658(19)30663-2. doi: 10.1016/j.dld.2019.06.006.
  23. Li, X. et al. (2019). The methyl-triclosan induced caspase-dependent mitochondrial apoptosis in HepG2 cells mediated through oxidative stress. Ecotoxicol Environ Saf. 182:109391. doi: 10.1016/j.ecoenv.2019.109391.
  24. Figueroa, E. et al. (2019). Effects of cryopreservation on mitochondrial function and sperm quality in fish. Aquaculture. doi:10.1016/j.aquaculture.2019.06.004.
  25. Kang, J.J. et al. (2019). Voluntary wheel running activates Akt/AMPK/eNOS signaling cascades without improving profound endothelial dysfunction in mice deficient in α-galactosidase A. PLoS One. 14(5):e0217214. doi: 10.1371/journal.pone.0217214.
  26. Endesfelder, S. et al. (2019). Antioxidative effects of caffeine in a hyperoxia-based rat model of bronchopulmonary dysplasia. Respir Res. 20(1):88. doi: 10.1186/s12931-019-1063-5.
  27. Jankowski, J. et al. (2019). The effect of the dietary inclusion levels and sources of zinc on the performance, metabolism, redox and immune status of turkeys. Animal Feed Science and Technology. doi:10.1016/j.anifeedsci.2019.04.014.
  28. Ahmed, M.A. (2019). Protective effect of aqueous extract of Alhagi maurorum in spermatogenesis and antioxidant status of adult rats exposed to carbon tetrachloride. Iraqi Journal of Veterinary Sciences. 33(1):1-7. doi: 10.33899/ijvs.2019.125509.1031.
  29. Abd El-Moneim, A.E. et al. (2019). Beneficial effect of feeding olive pulp and Aspergillus awamori on productive performance, egg quality, serum/yolk cholesterol and oxidative status in laying Japanese quails. J. Anim. Feed Sci. 28(1):52–61. doi: 10.22358/jafs/105537/2019.
  30. Ognik, K. et al. (2019). The effect of copper nanoparticles and copper (II) salt on redox reactions and epigenetic changes in a rat model. J Anim Physiol Anim Nutr (Berl). 103(2):675-686. doi: 10.1111/jpn.13025.