In Vitro ROS/RNS Assay

In Vitro ROS/RNS Assay
  • Measures total reactive oxygen species and reactive nitrogen species, including hydrogen peroxide, nitric oxide, peroxyl radical, and peroxynitrite anion
  • Suitable for use with serum, plasma, urine, cell lysates or cell culture supernatants
  • Detection sensitivity limit of 10 pM for DCF and 40 nM for hydrogen peroxide

 

Frequently Asked Questions about this product

General FAQs about Oxidative Stress

Email To BuyerPrint this PageCopy Link
Ordering

Please contact your distributor for pricing.

OxiSelect™ In Vitro ROS/RNS Assay Kit (Green Fluorescence)
Catalog Number
STA-347
Size
96 assays
Detection
Fluorometric
Manual/Data Sheet Download
SDS Download
Price
$505.00
OxiSelect™ In Vitro ROS/RNS Assay Kit (Green Fluorescence)
Catalog Number
STA-347-5
Size
5 x 96 assays
Detection
Fluorometric
Manual/Data Sheet Download
SDS Download
Price
$2,150.00
OxiSelect™ In Vitro ROS/RNS Assay Kit (Green Fluorescence), Trial Size
Catalog Number
STA-347-T
Size
20 assays
Detection
Fluorometric
Manual/Data Sheet Download
SDS Download
Price
$255.00
Product Details

The OxiSelect™ In Vitro ROS/RNS Assay provides a sensitive method to detect total reactive oxygen species (ROS) plus reactive nitrogen species (RNS) in a wide variety of sample types. This assay employs a proprietary fluorogenic probe, DCFH-DiOxyQ; the probe is primed with a dequenching reagent to the highly reactive DCFH form. In the presence of ROS and RNS, the DCFH is rapidly oxidized to the highly fluorescent DCF.

Assay Principle.

Hydrogen Peroxide Standard Curve.

Detection of Various Free Radical Species. DCF fluorescence curves for AAPH (peroxyl radical generator), SIN-1 (peroxynitrite generator), and SNP (nitric oxide generator).

Recent Product Citations
  1. Kawachi, Y. et al. (2021). Increased plasma XOR activity induced by NAFLD/NASH and its possible involvement in vascular neointimal proliferation. JCI Insight. 6(17):144762. doi: 10.1172/jci.insight.144762.
  2. Azarova, I. et al. (2021). The Link between Type 2 Diabetes Mellitus and the Polymorphisms of Glutathione-Metabolizing Genes Suggests a New Hypothesis Explaining Disease Initiation and Progression. Life (Basel). 11(9):886. doi: 10.3390/life11090886.
  3. Floerkemeier, T. et al. (2021). Do biomarkers allow a differentiation between osteonecrosis of the femoral head and osteoarthritis of the hip? - a biochemical, histological and gene expression analysis. Osteoarthritis Cartilage. doi: 10.1016/j.joca.2021.08.006.
  4. Alshammari, G.M. et al. (2021). Quercetin improves the impairment in memory function and attenuates hippocampal damage in cadmium chloride-intoxicated male rats by suppressing acetylcholinesterase and concomitant activation of SIRT1 signaling. J Funct Foods. doi: 10.1016/j.jff.2021.104675.
  5. Nahand, J.S. et al. (2021). Possible role of HPV/EBV coinfection in anoikis resistance and development in prostate cancer. BMC Cancer. 21(1):926. doi: 10.1186/s12885-021-08658-y.
  6. Kang, J.S. et al. (2021). Ingestion of Bis(2-ethylhexyl) phthalate (DEHP) during adolescence causes depressive-like behaviors through hypoactive glutamatergic signaling in the medial prefrontal cortex. Environ Pollut. 289:117978. doi: 10.1016/j.envpol.2021.117978.
  7. Kim, B.Y. (2021). Antiapoptotic role of major royal jelly protein 8 of honeybee (Apis mellifera) venom. J Asia Pac Entomol. doi: 10.1016/j.aspen.2021.05.014.
  8. Aksu, K. et al. (2021). The investigation of the role of sirtuin-1 on embryo implantation in oxidative stress-induced mice. J Assist Reprod Genet. doi: 10.1007/s10815-021-02229-7.
  9. Alshehri, A. S. et al. (2021). Cadmium chloride induces non-alcoholic fatty liver disease in rats by stimulating miR-34a/SIRT1/FXR/p53 axis. Sci Total Environ. doi: 10.1016/j.scitotenv.2021.147182.
  10. Kim, B.S.  et al. (2021). Engineering of diseased human skin equivalent using 3D cell printing for representing pathophysiological hallmarks of type 2 diabetes in vitro. Biomaterials. 272:120776. doi: 10.1016/j.biomaterials.2021.120776.
  11. Alshehri, A.S. et al. (2021). Kaempferol attenuates diabetic nephropathy in streptozotocin-induced diabetic rats by a hypoglycaemic effect and concomitant activation of the Nrf-2/Ho-1/antioxidants axis. Arch Physiol Biochem. doi: 10.1080/13813455.2021.1890129.
  12. Cirino, T.J. et al. (2021). Expression of Human Immunodeficiency Virus Transactivator of Transcription (HIV-Tat1-86) Protein Alters Nociceptive Processing that is Sensitive to Anti-Oxidant and Anti-Inflammatory Interventions. J Neuroimmune Pharmacol. doi: 10.1007/s11481-021-09985-4.
  13. Miola, M. et al. (2021). Tellurium: a new active element for innovative multifunctional bioactive glasses. Mater Sci Eng C Mater Biol Appl. doi: 10.1016/j.msec.2021.111957.
  14. Shati, A.A. et al. (2021). Acylated ghrelin protects against Doxorubicin-induced nephropathy by activating SIRT1. Basic Clin Pharmacol Toxicol. doi: 10.1111/bcpt.13569.
  15. Zhang, J. et al. (2021). Prolyl endopeptidase disruption reduces hepatic inflammation and oxidative stress in methionine-choline-deficient diet-induced steatohepatitis. Life Sci. 270:119131. doi: 10.1016/j.lfs.2021.119131.
  16. Akgül, B. et al. (2021). Alleviation of prilocaine-induced epileptiform activity and cardiotoxicity by thymoquinone. Daru. doi: 10.1007/s40199-020-00385-2.
  17. Zhang, Y. et al. (2021). Neuroprotective effect of the somatostatin receptor 5 agonist L-817,818 on retinal ganglion cells in experimental glaucoma. Exp Eye Res. 204:108449. doi: 10.1016/j.exer.2021.108449.
  18. Sun, Q. et al. (2021). Grape seed proanthocyanidins improves depression-like behavior by alleviating oxidative stress and NLRP3 activation in the hippocampus of prenatally-stressed female offspring rats. J Histotechnol. doi: 10.1080/01478885.2020.1861907.
  19. Fatima, S. et al. (2021). Epigallocatechin gallate and coenzyme Q10 attenuate cisplatin-induced hepatotoxicity in rats via targeting mitochondrial stress and apoptosis. J Biochem Mol Toxicol. doi: 10.1002/jbt.22701.
  20. Park, H.G. et al. (2021). Upregulation of Transferrin and Major Royal Jelly Proteins in the Spermathecal Fluid of Mated Honeybee (Apis mellifera) Queens. Insects. 12(8):690. doi: 10.3390/insects12080690.
  21. Yuan, X. et al. (2021). Toxicometabolomics of lindane in adult zebrafish (Danio rerio) using GC-MS/MS and LC-Orbitrap-MS/MS. Appl Biol Chem. doi: 10.1186/s13765-021-00623-4.
  22. Mavangira, V. et al. (2021). Activity of sEH and Oxidant Status during Systemic Bovine Coliform Mastitis. Antioxidants (Basel). 10(5):812. doi: 10.3390/antiox10050812.
  23. Sharma, S. et al. (2021). Mechanisms of disease-modifying effect of saracatinib (AZD0530), a Src/Fyn tyrosine kinase inhibitor, in the rat kainate model of temporal lobe epilepsy. Neurobiol Dis. doi: 10.1016/j.nbd.2021.105410.
  24. Nakanishi, K. et al. (2021). High-Dose Vitamin C Exerts Its Anti-cancer Effects in a Xenograft Model of Colon Cancer by Suppressing Angiogenesis. Biol Pharm Bull. 44(6):884-887. doi: 10.1248/bpb.b21-00089.
  25. Ohnishi, S. et al. (2021). Chemoprevention by aspirin against inflammation-related colorectal cancer in mice. J. Clin. Biochem. Nutr. doi: 10.3164/jcbn.20-189.
  26. Liu, Y. et al. (2021). Effect and Mechanism Study of Sodium Houttuyfonate on Ventilator-Induced Lung Injury by Inhibiting ROS and Inflammation. Yonsei Med J. 62(6):545-554. doi: 10.3349/ymj.2021.62.6.545.
  27. Mavangira, V. et al. (2021). Activity of sEH and Oxidant Status during Systemic Bovine Coliform Mastitis. Antioxidants (Basel). 10(5):812. doi: 10.3390/antiox10050812.
  28. Munakarmi, S. et al. (2021). 3,3′-Diindolylmethane Suppresses the Growth of Hepatocellular Carcinoma by Regulating Its Invasion, Migration, and ER Stress-Mediated Mitochondrial Apoptosis. Cells. 10(5):1178. doi: 10.3390/cells10051178.
  29. Ferraris, S. et al. (2021). Antioxidant Activity of Silica-Based Bioactive Glasses. ACS Biomater Sci Eng. doi: 10.1021/acsbiomaterials.1c00048.
  30. Aljaser, F. et al. (2021). Effect of trace elements on the seminal oxidative status and correlation to sperm motility in infertile Saudi males. Saudi J Biol Sci. doi: 10.1016/j.sjbs.2021.04.042.