In Vitro ROS/RNS Assay

In Vitro ROS/RNS Assay
  • Measures total reactive oxygen species and reactive nitrogen species, including hydrogen peroxide, nitric oxide, peroxyl radical, and peroxynitrite anion
  • Suitable for use with serum, plasma, urine, cell lysates or cell culture supernatants
  • Detection sensitivity limit of 10 pM for DCF and 40 nM for hydrogen peroxide

 

Frequently Asked Questions about this product

General FAQs about Oxidative Stress

Email To BuyerPrint this PageCopy Link
Ordering

Please contact your distributor for pricing.

OxiSelect™ In Vitro ROS/RNS Assay Kit (Green Fluorescence)
Catalog Number
STA-347
Size
96 assays
Detection
Fluorometric
Manual/Data Sheet Download
SDS Download
Price
$535.00
OxiSelect™ In Vitro ROS/RNS Assay Kit (Green Fluorescence)
Catalog Number
STA-347-5
Size
5 x 96 assays
Detection
Fluorometric
Manual/Data Sheet Download
SDS Download
Price
$2,280.00
OxiSelect™ In Vitro ROS/RNS Assay Kit (Green Fluorescence), Trial Size
Catalog Number
STA-347-T
Size
20 assays
Detection
Fluorometric
Manual/Data Sheet Download
SDS Download
Price
$270.00
Product Details

The OxiSelect™ In Vitro ROS/RNS Assay provides a sensitive method to detect total reactive oxygen species (ROS) plus reactive nitrogen species (RNS) in a wide variety of sample types. This assay employs a proprietary fluorogenic probe, DCFH-DiOxyQ; the probe is primed with a dequenching reagent to the highly reactive DCFH form. In the presence of ROS and RNS, the DCFH is rapidly oxidized to the highly fluorescent DCF.

Assay Principle.

Hydrogen Peroxide Standard Curve.

Detection of Various Free Radical Species. DCF fluorescence curves for AAPH (peroxyl radical generator), SIN-1 (peroxynitrite generator), and SNP (nitric oxide generator).

Recent Product Citations
  1. Klyosova, E. et al. (2022). A Polymorphism in the Gene Encoding Heat Shock Factor 1 (HSF1) Increases the Risk of Type 2 Diabetes: A Pilot Study Supports a Role for Impaired Protein Folding in Disease Pathogenesis. Life (Basel). 12(11):1936. doi: 10.3390/life12111936.
  2. Chen, Y. et al. (2023). Antioxidative behavior of α2-macroglobulin in intervertebral disc degeneration. J Med Biochem. 42:1-8. doi: 10.5937/jomb0-39557.
  3. Xu, H. et al. (2022). Molecular Mechanism of Epimedium Extract against Ischemic Stroke Based on Network Pharmacology and Experimental Validation. Oxid Med Cell Longev. doi: 10.1155/2022/3858314.
  4. Härtel, J.A. et al. (2022). Influence of 24 h Simulated Altitude on Red Blood Cell Deformability and Hematological Parameters in Patients with Fontan Circulation. Metabolites. 12(11):1025. 10.3390/metabo12111025.
  5. Hiramoto, K. et al. (2022). Skin, Liver, and Kidney Interactions Contribute to Skin Dryness in Aging KK-Ay/Tajcl Mice. Biomedicines. 10(10):2648. doi: 10.3390/biomedicines10102648.
  6. Ryu, J.H. et al. (2022). Fermented and Aged Ginseng Sprouts (Panax ginseng) and Their Main Component, Compound K, Alleviate Asthma Parameters in a Mouse Model of Allergic Asthma through Suppression of Inflammation, Apoptosis, ER Stress, and Ferroptosis. Antioxidants. 11(10):2052. doi: 10.3390/antiox11102052.
  7. Valberg, S.J. et al. (2022). Enriched Pathways of Calcium Regulation, Cellular/Oxidative Stress, Inflammation, and Cell Proliferation Characterize Gluteal Muscle of Standardbred Horses between Episodes of Recurrent Exertional Rhabdomyolysis. Genes. 13(10):1853. doi: 10.3390/genes13101853.
  8. Chang, G.R.L. et al. (2022). Kefir peptides ameliorate osteoporosis in AKR1A1 knockout mice with vitamin C deficiency by promoting osteoblastogenesis and inhibiting osteoclastogenesis. Biomed Pharmacother. doi: 10.1016/j.biopha.2022.113859.
  9. Lee, J.H. et al. (2022). Evaluation of tryptophan biomass as an alternative to conventional crystalline tryptophan in broiler diets. J Appl Poult Res. doi: 10.1016/j.japr.2022.100302.
  10. Swartz, T.H. et al. (2022). Effects of prenatal dietary rumen-protected choline supplementation during late gestation on calf growth, metabolism, and vaccine response. J Dairy Sci. doi: 10.3168/jds.2022-22239.
  11. Furtado, F. et al. (2022). Regulation of the molecular repertoires of oxidative stress response in the gills and olfactory organ of Atlantic salmon following infection and treatment of the parasite Neoparameoba perurans. Fish Shellfish Immunol. 130:612-623. doi: 10.1016/j.fsi.2022.09.040.
  12. Wang, S. et al. (2022). Energy-Supporting Enzyme-Mimic Nanoscaffold Facilitates Tendon Regeneration Based on a Mitochondrial Protection and Microenvironment Remodeling Strategy. Adv Sci (Weinh). doi: 10.1002/advs.202202542.
  13. Lee, K.S. et al. (2022). Bee Venom Induces Acute Inflammation through a H2O2-Mediated System That Utilizes Superoxide Dismutase. Toxins (Basel). 14(8):558. doi: 10.3390/toxins14080558.
  14. Del Mar Rivas-Chacón, L. et al. (2022). Preventive Effect of Cocoa Flavonoids via Suppression of Oxidative Stress-Induced Apoptosis in Auditory Senescent Cells. Antioxidants (Basel). 11(8):1450. doi: 10.3390/antiox11081450.
  15. Min, H.K. et al. (2022). DJ-1 controls T cell differentiation and osteoclastogenesis in rheumatoid arthritis. Sci Rep. 12(1):12767. doi: 10.1038/s41598-022-16285-1.
  16. Yeh, C.H. et al. (2022). Hesperetin promotes longevity and delays aging via activation of Cisd2 in naturally aged mice. J Biomed Sci. 29(1):53. doi: 10.1186/s12929-022-00838-7.
  17. Wang, Q. et al. (2022). Improving effects of low-temperature atmospheric plasma on abdominal surgical site infection induced by ESBL-E. coli in rats. AIP Adv. doi: 10.1063/5.0094975.
  18. Alshuniaber, M.A. et al. (2022). Camel milk protein hydrosylate alleviates hepatic steatosis and hypertension in high fructose-fed rats. Pharm Biol. 60(1):1137-1147. doi: 10.1080/13880209.2022.2079678.
  19. Guo, Y. et al. (2022). Alternate-Day Ketogenic Diet Feeding Protects against Heart Failure through Preservation of Ketogenesis in the Liver. Oxid Med Cell Longev. doi: 10.1155/2022/4253651.
  20. Xu, Y. et al. (2022). N‑acetyl cysteine prevents ambient fine particulate matter‑potentiated atherosclerosis via inhibition of reactive oxygen species‑induced oxidized low density lipoprotein elevation and decreased circulating endothelial progenitor cell. Mol Med Rep. 26(1):236. doi: 10.3892/mmr.2022.12752.
  21. Tan, H. et al. (2022). Glabridin, a bioactive component of licorice, ameliorates diabetic nephropathy by regulating ferroptosis and the VEGF/Akt/ERK pathways. Mol Med. 28(1):58. doi: 10.1186/s10020-022-00481-w.
  22. Alharbi, S. (2022). Exogenous administration of unacylated ghrelin attenuates hepatic steatosis in high-fat diet-fed rats by modulating glucose homeostasis, lipogenesis, oxidative stress, and endoplasmic reticulum stress. Biomed Pharmacother. 151:113095. doi: 10.1016/j.biopha.2022.113095.
  23. Alagal R.I. et al. (2022). Kaempferol attenuates doxorubicin-mediated nephropathy in rats by activating SIRT1 signaling. J Funct Foods. doi: 10.1016/j.jff.2021.104918.
  24. Polonikov, A. et al. (2022). The Impact of Genetic Polymorphisms in Glutamate-Cysteine Ligase, a Key Enzyme of Glutathione Biosynthesis, on Ischemic Stroke Risk and Brain Infarct Size. Life (Basel). 12(4):602. doi: 10.3390/life12040602.
  25. Cho, H.M. et al. (2022). Protective effects of Panax ginseng berry extract on blue light-induced retinal damage in ARPE-19 cells and mouse retina. J Ginseng Res. doi: 10.1016/j.jgr.2022.04.002.
  26. Pamies, D. et al. (2022). Human organotypic brain model as a tool to study chemical-induced dopaminergic neuronal toxicity. Neurobiol Dis. 169:105719. doi: 10.1016/j.nbd.2022.105719.
  27. Siregar, A.S. et al. (2022). Oyster broth concentrate and its major component taurine alleviate acute alcohol-induced liver damage. Food Sci Nutr. doi: 10.1002/fsn3.2847.
  28. Dinardo, F.R. et al. (2022). Oral administration of nucleotides in calves: Effects on oxidative status, immune response, and intestinal mucosa development. J Dairy Sci. doi: 10.3168/jds.2021-20804.
  29. Alsabaani, N.A. et al. (2022). Maslinic Acid Protects against Streptozotocin-Induced Diabetic Retinopathy by Activating Nrf2 and Suppressing NF-κB. J Ophthalmol. 2022:3044202. doi: 10.1155/2022/3044202.
  30. Giri, T. et al. (2022). Labor induction with oxytocin in pregnant rats is not associated with oxidative stress in the fetal brain. Sci Rep. 12(1):3143. doi: 10.1038/s41598-022-07236-x.