Hydrogen Peroxide Assays

Hydrogen Peroxide Assays
  • Detect hydrogen peroxide concentrations as low as 0.8 µM (colorimetric) or 50 nM (fluorometric)
  • Suitable for use with cell lysates, tissue homogenates, cell culture supernatants, plasma, serum, urine, or other biological fluids
  • Simple assay protocol provides results in 30-90 minutes, depending on sample type


Frequently Asked Questions about this product

General FAQs about Oxidative Stress

Email To BuyerPrint this PageCopy Link

Please contact your distributor for pricing.

OxiSelect™ Hydrogen Peroxide/Peroxidase Assay Kit (Fluorometric)
Catalog Number
500 assays
Manual/Data Sheet Download
SDS Download
OxiSelect™ Hydrogen Peroxide/Peroxidase Assay Kit (Colorimetric)
Catalog Number
500 assays
Manual/Data Sheet Download
SDS Download
Product Details

The OxiSelect™ Hydrogen Peroxide/Peroxidase Assay Kits are sensitive, quantitative assays to measure hydrogen peroxide or peroxidase.   In the presence of HRP, the probe reacts with H2O2 in a 1:1 stoichiometry to produce either a colored product detectable at 540-570 nm (colorimetric format), or a highly fluorescent Resorufin product read by a fluorescence microplate reader with an excitation of 530-560 nm and an emission of 590 nm (fluorometric format).  The H2O2 or peroxidase content in unknown samples is determined by comparison with its respective standard curve.

Recent Product Citations
  1. Miliński, M. et al. (2023). The effect of sulindac on redox homeostasis and apoptosis-related proteins in melanotic and amelanotic cells. Pharmacol Rep. doi: 10.1007/s43440-023-00493-1 (#STA-844).
  2. Coudert, E. et al. (2023). Slow and Fast-Growing Chickens Use Different Antioxidant Pathways to Maintain Their Redox Balance during Postnatal Growth. Animals (Basel). 13(7):1160. doi: 10.3390/ani13071160 (#STA-844).
  3. Saenen, N.D. et al. (2023). Polystyrene Microplastics of Varying Sizes and Shapes Induce Distinct Redox and Mitochondrial Stress Responses in a Caco-2 Monolayer. Antioxidants (Basel). 12(3):739. doi: 10.3390/antiox12030739 (#STA-344).
  4. Alghabari, F. et al. (2023). Physio-Chemical and Agronomic-Based Characterization of Synthetic Hexaploid Wheat Germplasm under Field Imposed Conditions of Drought and Heat Stress. Agronomy. 13(2):458. doi: 10.3390/agronomy13020458 (#STA-344).
  5. de Oliveira, M.G. et al. (2022). Selective Pharmacological Inhibition of NOX2 by GSK2795039 Improves Bladder Dysfunction in Cyclophosphamide-Induced Cystitis in Mice. Antioxidants (Basel). 12(1):92. doi: 10.3390/antiox12010092 (#STA-844).
  6. Ohmori, I. et al. (2022). Thioredoxin deficiency increases oxidative stress and causes bilateral symmetrical degeneration in rat midbrain. Neurobiol Dis. doi: 10.1016/j.nbd.2022.105921 (#STA-844).
  7. Abdrabouh, A.E. (2022). Inflammatory and proapoptotic effects of inhaling gasoline fumes on the lung and ameliorative effects of fenugreek seeds. Sci Rep. 12(1):14446. doi: 10.1038/s41598-022-18607-9 (#STA-844).
  8. Park, H.J. et al. (2022). Doxorubicin Induces Bone Loss by Increasing Autophagy through a Mitochondrial ROS/TRPML1/TFEB Axis in Osteoclasts. Antioxidants (Basel). 11(8):1476. doi: 10.3390/antiox11081476 (#STA-844).
  9. Sul, O.J. et al. (2022). GSPE Protects against Bleomycin-Induced Pulmonary Fibrosis in Mice via Ameliorating Epithelial Apoptosis through Inhibition of Oxidative Stress. Oxid Med Cell Longev. doi: 10.1155/2022/8200189 (#STA-844).
  10. Kassem, S. et al. (2022). In vivo study of dose-dependent antioxidant efficacy of functionalized core-shell yttrium oxide nanoparticles. Naunyn Schmiedebergs Arch Pharmacol. doi: 10.1007/s00210-022-02219-1 (#STA-344).
  11. Han, G. et al. (2022). Nrf2 expands the intracellular pool of the chaperone AHSP in a cellular model of β-thalassemia. Redox Biol. 50:102239. doi: 10.1016/j.redox.2022.102239 (#STA-344).
  12. Bononi, I. et al. (2022). Antioxidant Activity of Resveratrol Diastereomeric Forms Assayed in Fluorescent-Engineered Human Keratinocytes. Antioxidants. 11(2):196. doi: 10.3390/antiox11020196 (#STA-344).
  13. Damal Villivalam, S. et al. (2021). A necessary role of DNMT3A in endurance exercise by suppressing ALDH1L1-mediated oxidative stress. EMBO J. doi: 10.15252/embj.2020106491 (#STA-344).
  14. Alghabari, F. et al. (2021). Biochemical and Physiological Responses of Thermostable Wheat Genotypes for Agronomic Yield under Heat Stress during Reproductive Stages. Agronomy. 11(10):2080. doi: 10.3390/agronomy11102080 (#STA-344).
  15. Zunica, E.R.M. et al. (2021). Breast cancer growth and proliferation is suppressed by the mitochondrial targeted furazano[3,4-b]pyrazine BAM15. Cancer Metab. 9(1):36. doi: 10.1186/s40170-021-00274-5 (#STA-344).
  16. Landerer, S. et al. (2021). UDP-glucuronosyltransferases mediate coffee-associated reduction of liver fibrosis in bile duct ligated humanized transgenic UGT1A mice. Hepatobiliary Surg Nutr. 10(6):766-781. doi: 10.21037/hbsn-20-9 (#STA-844).
  17. Balmant, K.M. et al. (2021). Guard cell redox proteomics reveals a role of lipid transfer protein in plant defense. J Proteomics. doi: 10.1016/j.jprot.2021.104247 (#STA-344).
  18. Odatsu, T. et al. (2021). Lactoferrin with Zn-ion protects and recovers fibroblast from H2O2-induced oxidative damage. Int J Biol Macromol. 190:368-374. doi: 10.1016/j.ijbiomac.2021.08.214 (#STA-844).
  19. Graham, R.J. et al. (2021). Zinc supplementation modulates intracellular metal uptake and oxidative stress defense mechanisms in CHO cell cultures. Biochem Eng J. doi: 10.1016/j.bej.2021.107928 (#STA-844).
  20. Gromotowicz-Poplawska, A. et al. (2021). Hyperglycemia Potentiates Prothrombotic Effect of Aldosterone in a Rat Arterial Thrombosis Model. Cells. 10(2):471. doi: 10.3390/cells10020471 (#STA-844).
  21. Chiang, C.C. et al. (2020). Aqueous Extract of Kan-Lu-Hsiao-Tu-Tan Ameliorates Collagen-Induced Arthritis in Mice by Inhibiting Oxidative Stress and Inflammatory Responses. Life (Basel). 10(12):E313. doi: 10.3390/life10120313 (#STA-844).
  22. Hwang, D.K. et al. (2020). Changes in the Systemic Expression of Sirtuin-1 and Oxidative Stress after Intravitreal Anti-Vascular Endothelial Growth Factor in Patients with Retinal Vein Occlusion. Biomolecules. 10(10):1414. doi: 10.3390/biom10101414 (#STA-344).
  23. Sengupta, S. et al. (2020). Ligand-induced gene activation is associated with oxidative genome damage whose repair is required for transcription. Proc Natl Acad Sci U S A. doi: 10.1073/pnas.1919445117 (#STA-844).
  24. Böhm, A. et al. (2020). Increased mitochondrial respiration of adipocytes from metabolically unhealthy obese compared to healthy obese individuals. Sci Rep. 10(1):12407. doi: 10.1038/s41598-020-69016-9 (#STA-844).
  25. Sabry, M.M. et al. (2020). Carnitine, apelin and resveratrol regulate mitochondrial quality control (QC) related proteins and ameliorate acute kidney injury: role of hydrogen peroxide. Arch Physiol Biochem. doi: 10.1080/13813455.2020.1773504 (#STA-844).
  26. Nitta, Y. et al. (2020). Catalase is required for peroxisome maintenance during adipogenesis. Biochim Biophys Acta Mol Cell Biol Lipids. doi: 10.1016/j.bbalip.2020.158726 (#STA-344).
  27. Ansar, M. et al. (2020). Increased Lung Catalase Activity Confers Protection Against Experimental RSV Infection. Sci Rep. 10(1):3653. doi: 10.1038/s41598-020-60443-2 (#STA-344).
  28. Yoshimoto, S. et al. (2020). Riboflavin Plays a Pivotal Role in the UVA-Induced Cytotoxicity of Fibroblasts as a Key Molecule in the Production of H2O2 by UVA Radiation in Collaboration with Amino Acids and Vitamins. Int J Mol Sci. 21(2). pii: E554. doi: 10.3390/ijms21020554 (#STA-344).
  29. Ścibior, A. et al. (2020). In vitro effect of vanadyl sulfate on cultured primary astrocytes: cell viability and oxidative stress markers. J Appl Toxicol. doi: 10.1002/jat.3939 (#STA-844).
  30. El-Boshy, M. et al. (2020). Vitamin D3 and calcium cosupplementation alleviates cadmium hepatotoxicity in the rat: Enhanced antioxidative and anti-inflammatory actions by remodeling cellular calcium pathways. J Biochem Mol Toxicol. doi: 10.1002/jbt.22440 (#STA-844).