Total Cholesterol Assay Kits

Total Cholesterol Assay Kits
  • Suitable for use with serum, plasma, lysate, or tissue samples
  • Cholesterol standard included
  • Available with colorimetric or fluorometric detection

 

Frequently Asked Questions about this product

Email To BuyerPrint this PageCopy Link
Ordering

Please contact your distributor for pricing.

Total Cholesterol Assay Kit (Fluorometric)
Catalog Number
STA-390
Size
192 assays
Detection
Fluorometric
Manual/Data Sheet Download
SDS Download
Price
$415.00
Total Cholesterol Assay Kit (Colorimetric)
Catalog Number
STA-384
Size
192 assays
Detection
Colorimetric
Manual/Data Sheet Download
SDS Download
Price
$415.00
Product Details

Cell Biolabs’ Total Cholesterol Assay Kits measure the total cholesterol within serum, plasma, cell lysate, or tissue samples. The assays will detect total cholesterol (cholesteryl esters plus free cholesterol) in the presence of cholesterol esterase or only free cholesterol in the absence of the esterase enzyme.

Assay Principle for the Total Cholesterol Assay (Fluorometric).

Cholesterol Standard Curve.

Recent Product Citations
  1. Devarshi, P.P. et al. (2021). A single bout of cycling exercise induces nucleosome repositioning in the skeletal muscle of lean and overweight/obese individuals. Diabetes Obes Metab. doi: 10.1111/dom.14541 (#STA-384).
  2. Elsyade, R. et al. (2021). Hazards of Chronic Exposure to Nonylphenol: Concomitant Effect on Non-alcoholic Fatty Liver Disease in Male Albino Rats. Open Access Maced J Med Sci. 9(A):548-555 doi: 10.3889/oamjms.2021.6237 (#STA-384).
  3. Rekhi, U.R. et al. (2021).  Impact of a CD36 Inhibitor on Porphyromonas gingivalis Mediated Atherosclerosis. Arch Oral Biol. doi: 10.1016/j.archoralbio.2021.105129 (#STA-384).
  4. Basile, A.J. et al. (2021). A four-week urban diet impairs vasodilation but not nutritional physiology in wild-caught mourning doves (Zenaida macroura). Physiol Biochem Zool. doi: 10.1086/714831 (#STA-384).
  5. Kohlhaas, J. et al. (2021). Endothelial cells control vascular smooth muscle cell cholesterol levels by regulating 24-dehydrocholesterol reductase expression. Exp Cell Res. doi: 10.1016/j.yexcr.2020.112446 (#STA-384).
  6. Ganguly, S. et al. (2021). Non-alcoholic Steatohepatitis and HCC in a Hyperphagic Mouse Accelerated by Western Diet. Cell Mol Gastroenterol Hepatol. doi: 10.1016/j.jcmgh.2021.05.010 (#STA-384).
  7. Kumar, S. et al. (2021). Cocaine-Specific Effects on Exosome Biogenesis in Microglial Cells. Neurochem Res. doi: 10.1007/s11064-021-03231-2 (#STA-384).
  8. Lee, H.B. et al. (2020). Molokhia leaf extract prevents gut inflammation and obesity. J Ethnopharmacol. doi: 10.1016/j.jep.2020.112866 (#STA-384).
  9. Mou, Y. et al. (2020). Impaired lipid metabolism in astrocytes underlies degeneration of cortical projection neurons in hereditary spastic paraplegia. Acta Neuropathol Commun. 8(1):214. doi: 10.1186/s40478-020-01088-0 (#STA-384).
  10. Deng, Q. et al. (2020). Dietary Lactic Acid Bacteria Modulate Yolk Components and Cholesterol Metabolism by Hmgr Pathway in Laying Hens. Braz. J. Poult. 22(3):eRBCA-2020-1261. doi: 10.1590/1806-9061-2020-1261 (#STA-390).
  11. Lee, S. et al. (2020). Hypolipidemic Roles of Casein-Derived Peptides by Regulation of Trans-Intestinal Cholesterol Excretion and Bile Acid Synthesis. Nutrients. 12(10):3058. doi: 10.3390/nu12103058 (#STA-384).
  12. Choi, B.R. et al. (2020). Anti-Diabetic Obesity Effects of Wasabia Japonica Matsum Leaf Extract on 45% Kcal High-Fat Diet-Fed Mice. Nutrients. 12(9):E2837. doi: 10.3390/nu12092837 (#STA-384).
  13. Soror, E.I. et al. (2020). Recuperative effects of honey bee pollen, ginger (Zingiber officinale), and Moringa oleifera in Nile tilapia (Oreochromis niloticus L.) after sub-lethal exposure to dimethoate. Aquaculture. doi: 10.1016/j.aquaculture.2020.735886 (#STA-384).
  14. Abdelwahed, K.S. et al. (2020). Pseurotin A as a Novel Suppressor of Hormone Dependent Breast Cancer Progression and Recurrence by Inhibiting PCSK9 Secretion and Interaction with LDL Receptor. Pharmacol Res. doi: 10.1016/j.phrs.2020.104847 (#STA-384).
  15. Aboulmagd, Y.M. et al. (2020). Role of linagliptin in preventing the pathological progression of hepatic fibrosis in high fat diet and streptozotocin-induced diabetic obese rats. Eur J Pharmacol. doi: 10.1016/j.ejphar.2020.173224 (#STA-384).
  16. Martinez, N. et al. (2019). mTORC2/Akt activation in adipocytes is required for adipose tissue inflammation in tuberculosis. EBioMedicine. pii: S2352-3964(19)30433-5. doi: 10.1016/j.ebiom.2019.06.052 (#STA-384).
  17. Lim, J.Y. et al. (2019). Dietary β-Cryptoxanthin Inhibits High-Refined Carbohydrate Diet-Induced Fatty Liver via Differential Protective Mechanisms Depending on Carotenoid Cleavage Enzymes in Male Mice. J Nutr. pii: nxz106. doi: 10.1093/jn/nxz106 (#STA-384).
  18. Singhal, A. et al. (2020). 2-Hydroxypropyl-gamma-cyclodextrin overcomes NPC1 deficiency by enhancing lysosome-ER association and autophagy. Sci Rep. 10(1):8663. doi: 10.1038/s41598-020-65627-4 (#STA-390).
  19. Berlin-Broner, Y. et al. (2020). Characterization of a mouse model to study the relationship between apical periodontitis and atherosclerosis. Int Endod J. doi: 10.1111/iej.13279 (#STA-384).
  20. Ruwisch, J. et al. (2020). Air Space Distension Precedes Spontaneous Fibrotic Remodeling and Impaired Cholesterol Metabolism in the Absence of Surfactant Protein C. Am J Respir Cell Mol Biol. doi: 10.1165/rcmb.2019-0358OC (#STA-384).
  21. Lim, J.Y. et al. (2019). Dietary β-Cryptoxanthin Inhibits High-Refined Carbohydrate Diet-Induced Fatty Liver via Differential Protective Mechanisms Depending on Carotenoid Cleavage Enzymes in Male Mice. J Nutr. pii: nxz106. doi: 10.1093/jn/nxz106 (#SAT-384).
  22. Martinez, N. et al. (2019). mTORC2/Akt activation in adipocytes is required for adipose tissue inflammation in tuberculosis. EBioMedicine. pii: S2352-3964(19)30433-5. doi: 10.1016/j.ebiom.2019.06.052 (#STA-384).
  23. Kumazaki, S. et al. (2019). Bile Acid Metabolism is an Intermediary Factor between Non-Alcoholic Steatohepatitis and Ischemic Heart Disease in SHRSP5/Dmcr Rats. J Nutri Food Sci. 9:763. doi: 10.35248/2155-9600.19.9.763 (#STA-384).
  24. Sohag, M. et al. (2019). Potential Antidiabetic Activities of Probiotic Strains, L. acidophilus and L. bulgaricus against Fructose-Fed Hyperglycemic Rats. Food Nutr Sci. 10:1419-1432. doi: 10.4236/fns.2019.1012101 (#STA-384).
  25. Lizardo, K. et al. (2019). Diet Alters Serum Metabolomic Profiling in the Mouse Model of Chronic Chagas Cardiomyopathy. Dis Markers. doi: 10.1155/2019/4956016 (#STA-384).
  26. Morales, A. et al. (2019). Point-of-care blood analyzers measure the nutritional state of eighteen free-living bird species. Comp Biochem Physiol A Mol Integr Physiol. 240:110594. doi: 10.1016/j.cbpa.2019.110594 (#STA-384).
  27. Kidnapillai, S. et al. (2019). Drugs Used in the Treatment of Bipolar Disorder and their Effects on Cholesterol Biosynthesis- A Possible Therapeutic Mechanism. World J Biol Psychiatry. doi: 10.1080/15622975.2019.1669823 (#STA-390).
  28. Le Menn, G. et al. (2019). Decrease in αβ/γδ T-cell ratio is accompanied by a reduction in high-fat diet-induced weight gain, insulin resistance, and inflammation. FASEB J. 33(2):2553-2562. doi: 10.1096/fj.201800696RR (#STA-390).
  29. Martiskainen H, et al. (2017). DHCR24 exerts neuroprotection upon inflammation-induced neuronal death. J Neuroinflammation. 14(1):215. doi: 10.1186/s12974-017-0991-6 (#STA-390).
  30. Hsieh, H.Y. et al. (2017). Quantification of Endogenous Cholesterol in Human Serum on Paper Using Direct Analysis in Real Time Mass Spectrometry. Anal Chem. 89(11):6146-6152. doi: 10.1021/acs.analchem.7b00943 (#STA-390).