Triglyceride Assays

Triglyceride Assays
  • Measure triglyceride concentration in serum, plasma, and lysates by a coupled enzymatic reaction system
  • Simple assay that quantitatively measures the amount of triglyceride in a 96-well microtiter plate format
  • Kits include triglyceride standards and free glycerol controls

 

Frequently Asked Questions about this product

Email To BuyerPrint this PageCopy Link
Ordering

Please contact your distributor for pricing.

Serum Triglyceride Quantification Kit (Colorimetric)
Catalog Number
STA-396
Size
100 assays
Detection
Colorimetric
Manual/Data Sheet Download
SDS Download
Price
$485.00
Serum Triglyceride Quantification Kit (Fluorometric)
Catalog Number
STA-397
Size
100 assays
Detection
Fluorometric
Manual/Data Sheet Download
SDS Download
Price
$485.00
Product Details

Cell Biolabs’ Serum Triglyceride Quantification Kits measure triglyceride concentrations in serum, plasma, and lysates by a coupled enzymatic reaction system.  First, lipase hydrolyzes the triglyceride ester bond, yielding glycerol.  The free glycerol is then phosphorylated and oxidized, producing hydrogen peroxide which reacts with the kit’s probe.

Standard Curve Generated with the Serum Triglyceride Quantification Kit (Colorimetric).

Recent Product Citations
  1. Lee, H.B. et al. (2020). Molokhia leaf extract prevents gut inflammation and obesity. J Ethnopharmacol. doi: 10.1016/j.jep.2020.112866 (#STA-396).
  2. Li, J. et al. (2020). Salsalate reverses metabolic disorders in a mouse model of non-alcoholic fatty liver disease through AMPK activation and caspase-6 activity inhibition. Basic Clin Pharmacol Toxicol. doi: 10.1111/bcpt.13535 (#STA-396).
  3. Deng, Q. et al. (2020). Dietary Lactic Acid Bacteria Modulate Yolk Components and Cholesterol Metabolism by Hmgr Pathway in Laying Hens. Braz. J. Poult. 22(3):eRBCA-2020-1261. doi: 10.1590/1806-9061-2020-1261 (#STA-397).
  4. Kim, D.Y. et al. (2020). Angiotensin AT1 receptor antagonism by losartan stimulates adipocyte browning via induction of apelin. J Biol Chem. doi: 10.1074/jbc.RA120.013834 (#STA-396).
  5. Greco, C.M. et al. (2020). A non-pharmacological therapeutic approach in the gut triggers distal metabolic rewiring capable of ameliorating diet-induced dysfunctions encompassed by metabolic syndrome. Sci Rep. 10(1):12915. doi: 10.1038/s41598-020-69469-y (#STA-396).
  6. Choi, E.M. et al. (2020). Orientin reduces the inhibitory effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on adipogenic differentiation and insulin signaling pathway in murine 3T3-L1 adipocytes. Chem Biol Interact. doi: 10.1016/j.cbi.2020.108978 (#STA-396).
  7. Nzuza, S. et al. (2019). Naringin abrogates HIV-1 protease inhibitors-induced atherogenic dyslipidemia and oxidative stress in vivo. Journal of Functional Foods. 52:156-164. doi:10.1016/j.jff.2018.11.007 (#STA-397).
  8. An, J.P. et al. (2019). Flavone glycosides from Sicyos angulatus and their inhibitory effects on hepatic lipid accumulation. Phytochemistry. 157:53-63. doi: 10.1016/j.phytochem.2018.10.013 (#STA-397).
  9. Sohag, M. et al. (2019). Potential Antidiabetic Activities of Probiotic Strains, L. acidophilus and L. bulgaricus against Fructose-Fed Hyperglycemic Rats. Food Nutr Sci. 10:1419-1432. doi: 10.4236/fns.2019.1012101 (#STA-396).
  10. Al-Maiahy, T.J. et al. (2019). Prolactin and risk of preeclampsia: A single institution, cross-sectional study. Asian Pac J Reprod. 8:112-7. doi: 10.4103/2305-0500.259168 (#STA-396).
  11. Kim, H. et al. (2019). Persistent changes in liver methylation and microbiome composition following reversal of diet-induced non-alcoholic-fatty liver disease. Cell Mol Life Sci. doi: 10.1007/s00018-019-03114-4 (#STA-396).
  12. Nopparat, J. et al. (2019). Ethanolic extracts of Pluchea indica (L.) leaf pretreatment attenuates cytokine-induced β-cell apoptosis in multiple low-dose streptozotocin-induced diabetic mice. PLoS One. 14(2):e0212133. doi: 10.1371/journal.pone.0212133 (#STA-396).
  13. Singh, A. et al. (2019). Host genetics and diet composition interact to modulate gut microbiota and predisposition to metabolic syndrome in spontaneously hypertensive stroke-prone rats. FASEB J. fj201801627RRR. doi: 10.1096/fj.201801627RRR (#STA-396).
  14. Sugihara, M. et al. (2019). The AAA+ ATPase/ubiquitin ligase mysterin stabilizes cytoplasmic lipid droplets. J Cell Biol. 218(3):949-960. doi: 10.1083/jcb.201712120 (#STA-396).
  15. Pant, A. et al. (2019). Farnesol induces fatty acid oxidation and decreases triglyceride accumulation in steatotic HepaRG cells. Toxicol Appl Pharmacol. 365:61-70. doi: 10.1016/j.taap.2019.01.003 (#STA-396).
  16. Choi, E.M. et al. (2018). Glabridin attenuates antiadipogenic activity induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin in murine 3T3-L1 adipocytes. J Appl Toxicol. 38(11):1426-1436. doi: 10.1002/jat.3664 (#STA-396).
  17. Singh, A. et al. (2018). Inulin fiber dose-dependently modulates energy balance, glucose tolerance, gut microbiota, hormones and diet preference in high-fat-fed male rats. J Nutr Biochem. 59:142-152. doi: 10.1016/j.jnutbio.2018.05.017 (#STA-396).
  18. Lee, E-S. et al (2018). Amelioration of obesity in high-fat diet-fed mice by chestnut starch modified by amylosucrase from Deinococcus geothermalis. Food Hydrocolloids. 75: 22-32 (#STA-396).
  19. Ilavenil, S. et al. (2017). Ferulic acid in Lolium multiflorum inhibits adipogenesis in 3T3-L1 cells and reduced high-fat-diet-induced obesity in Swiss albino mice via regulating p38MAPK and p44/42 signal pathways. Journal of Functional Foods. 37: 293-302 (#STA-396).
  20. Gulhane, M. et al. (2016). High fat diets induce colonic epithelial cell stress and inflammation that is reversed by IL-22. Sci Rep. doi:10.1038/srep28990 (#STA-396).
  21. Armstrong, R. M. et al. (2016). Rv2744c is a PspA ortholog that regulates lipid droplet homeostasis and nonreplicating persistence in Mycobacterium tuberculosis. J Bacteriol. 198:1645-1661 (#STA-396). 
  22. Chellan, B. et al. (2014). IL-22 is induced by S100/calgranulin and impairs cholesterol efflux in macrophages by downregulating AGCB1. J. Lipid Res. 55:443-454 (#STA-396).
  23. Marino, A. et al. (2014). ITCH Deficiency Protects From Diet-Induced Obesity. Diabetes 63:550-561 (#STA-396).