8-OHdG DNA Damage ELISA

8-OHdG DNA Damage ELISA
  • Detect as little as 100 pg/mL of 8-OHdG
  • Suitable for use with urine, serum, cells or tissues
  • 8-OHdG standard included for absolute quantitation

 

Frequently Asked Questions about this product

General FAQs about Oxidative Stress

Video: Color Development in an ELISA

Email To BuyerPrint this PageCopy Link
Ordering

Please contact your distributor for pricing.

OxiSelect™ Oxidative DNA Damage ELISA Kit (8-OHdG Quantitation), Trial Size
Catalog Number
STA-320-T
Size
32 assays
Detection
Colorimetric
Manual/Data Sheet Download
SDS Download
Price
$405.00
OxiSelect™ Oxidative DNA Damage ELISA Kit (8-OHdG Quantitation)
Catalog Number
STA-320
Size
96 assays
Detection
Colorimetric
Manual/Data Sheet Download
SDS Download
Price
$805.00
OxiSelect™ Oxidative DNA Damage ELISA Kit (8-OHdG Quantitation)
Catalog Number
STA-320-5
Size
5 x 96 assays
Detection
Colorimetric
Manual/Data Sheet Download
SDS Download
Price
$3,465.00
Product Details

Among numerous types of oxidative DNA damage, 8-hydroxydeoxyguanosine (8-OHdG) is a ubiquitous marker of oxidative stress. 8-OHdG, one of the byproducts of oxidative DNA damage, is physiologically formed and enhanced by chemical carcinogens.

Our OxiSelect™ Oxidative DNA Damage ELISA Kit (8-hydroxydeoxyguanosine assay) provides a powerful method for rapid, sensitive quantitation of 8-OHdG in DNA samples.

8-OHdG ELISA Standard Curve

8-OHdG Levels in Human Urine.

Recent Product Citations
  1. Rosa, T.S. et al. (2020). Sprint and endurance training in relation to redox and inflammatory status and biomarkers of aging in master athletes. Nitric Oxide. S1089-8603(20)30156-7. doi: 10.1016/j.niox.2020.05.004.
  2. Zaeem, A. et al. (2020). Effects of Biogenic Zinc Oxide Nanoparticles on Growth and Oxidative Stress Response in Flax Seedlings vs. In Vitro Cultures: A Comparative Analysis. Biomolecules. 10(6):E918. doi: 10.3390/biom10060918.
  3. Yakut, H.I. et al. (2020). Preventative and therapeutic effects of fennel (Foeniculum vulgare) seed extracts against necrotizing enterocolitis. J Food Biochem. doi: 10.1111/jfbc.13284.
  4. Tungmunnithum, D. et al. (2020). Almond Skin Extracts and Chlorogenic Acid Delay Chronological Aging and Enhanced Oxidative Stress Response in Yeast. Life (Basel). 10(6):E80. doi: 10.3390/life10060080.
  5. Zhu, G. et al. (2020). Differential effects and mechanisms of local anesthetics on esophageal carcinoma cell migration, growth, survival and chemosensitivity. BMC Anesthesiol. 20(1):126. doi: 10.1186/s12871-020-01039-1.
  6. Qiu, X. et al. (2020). Hydrogen attenuates radiation-induced intestinal damage by reducing oxidative stress and inflammatory response. Int Immunopharmacol. 84:106517. doi: 10.1016/j.intimp.2020.106517.
  7. Choudhuri, S. et al. (2020). PARP1-cGAS-NF-κB pathway of proinflammatory macrophage activation by extracellular vesicles released during Trypanosoma cruzi infection and Chagas disease. PLoS Pathog. 16(4):e1008474. doi: 10.1371/journal.ppat.1008474.
  8. Quan, Y. et al. (2020). The therapeutic efficacy of water-soluble coenzyme Q10 in an experimental model of tacrolimus-induced diabetes mellitus. Korean J Intern Med. doi: 10.3904/kjim.2019.269.
  9. Yadav, P. et al. (2020). Glutathione S-transferasesP1 AA (105Ile) allele increases oral cancer risk, interacts strongly with c-Jun Kinase and weakly detoxifies areca-nut metabolites. Sci Rep. 10(1):6032. doi: 10.1038/s41598-020-63034-3.
  10. Ognik, K. et al. (2020). The effect of different dietary ratios of lysine and arginine in diets with high or low methionine levels on oxidative and epigenetic DNA damage, the gene expression of tight junction proteins and selected metabolic parameters in Clostridium perfringens-challenged turkeys. Vet Res. 51(1):50. doi: 10.1186/s13567-020-00776-y.
  11. Hassan, A.A. et al. (2020). Chronic khat (Catha edulis) chewing and genotoxicity: The role of antioxidant defense system and oxidative damage of DNA. Phcog Mag. 16:Suppl S1:168-73. doi: 10.4103/pm.pm_455_19.
  12. Kim, B.R. et al. (2020). Mycobacterium abscessus infection leads to enhanced production of type 1 interferon and NLRP3 inflammasome activation in murine macrophages via mitochondrial oxidative stress. PLoS Pathog. 16(3):e1008294. doi: 10.1371/journal.ppat.1008294.
  13. Berniyanti, T. et al. (2020). Suitability of MDA, 8-OHdG and wild-type p53 as genotoxic biomarkers in metal (Co, Ni and Cr) exposed dental technicians: a cross-sectional study. BMC Oral Health. 20(1):65. doi: 10.1186/s12903-020-1049-1.
  14. Silva-Guillen, Y.V. et al. (2020). Growth performance, oxidative stress and immune status of newly weaned pigs fed peroxidized lipids with or without supplemental vitamin E or polyphenols. J Animal Sci Biotechnol. 11:22 . doi: 10.1186/s40104-020-0431-9.
  15. Kim, S. et al. (2020). CR6 interacting factor 1 deficiency induces premature senescence via SIRT3 inhibition in endothelial cells. Free Radic Biol Med. pii: S0891-5849(19)32385-8. doi: 10.1016/j.freeradbiomed.2020.02.017.
  16. Jacobson, M.H. et al. (2020). Oxidant stress and renal function among children with chronic kidney disease: a repeated measures study. Sci Rep. 10(1):3129. doi: 10.1038/s41598-020-59962-9.
  17. Zalewska, A. et al. (2020). Dysfunction of Salivary Glands, Disturbances in Salivary Antioxidants and Increased Oxidative Damage in Saliva of Overweight and Obese Adolescents. J Clin Med. 9(2). pii: E548. doi: 10.3390/jcm9020548.
  18. Azari, M.R. et al. (2020). Additive toxicity of Co-exposure to pristine multi-walled carbon nanotubes and benzo α pyrene in lung cells. Environ Res. 183:109219. doi: 10.1016/j.envres.2020.109219.
  19. Ma, L. et al. (2020). Antimalarial drug artesunate is effective against chemoresistant anaplastic thyroid carcinoma via targeting mitochondrial metabolism. J Bioenerg Biomembr. doi: 10.1007/s10863-020-09824-w.
  20. Kassem, S. et al. (2020). Functionalized Core-Shell Yttrium Oxide Nanoparticles as Antioxidants Agents in Heat Stressed Rats. Biol Trace Elem Res. doi: 10.1007/s12011-020-02036-8.
  21. Macit, Ç. et al. (2020). Combination of exercise and caloric restriction ameliorates nearly complete deleterious effects of aging on cardiovascular hemodynamic and antioxidant system parameters. J Res Pharm. 24(1): 121-132. doi: 10.35333/jrp.2020.118.
  22. Kim, B.W. et al. (2020). DNA damage accumulates and responses are engaged in human ALS brain and spinal motor neurons and DNA repair is activatable in iPSC-derived motor neurons with SOD1 mutations. Acta Neuropathol Commun. 8(1):7. doi: 10.1186/s40478-019-0874-4.
  23. Yu, Y. et al. (2020). The pro- and anti-cancer effects of oxycodone are associated with epithelial growth factor receptor level in cancer cells. Biosci Rep. pii: BSR20193524. doi: 10.1042/BSR20193524.
  24. El Bohi, K.M. et al. (2020). Extra virgin olive oil enhances the hepatic antioxidant defense and inhibits cytogenotoxic effects evoked by 5-hydroxymethylfurfural in mice. Environ Sci Pollut Res Int. doi: 10.1007/s11356-020-07659-x.
  25. Xiao, Q. et al. (2020). Artesunate targets oral tongue squamous cell carcinoma via mitochondrial dysfunction-dependent oxidative damage and Akt/AMPK/mTOR inhibition. J Bioenerg Biomembr. doi: 10.1007/s10863-020-09823-x.
  26. Sachan, R. et al. (2020). Dendropanax morbifera Protects against Renal Fibrosis in Streptozotocin-Induced Diabetic Rats. Antioxidants (Basel). 9(1). pii: E84. doi: 10.3390/antiox9010084.
  27. Wang, X. et al. (2019). Maternal diabetes induces autism-like behavior by hyperglycemia-mediated persistent oxidative stress and suppression of superoxide dismutase 2. Proc Natl Acad Sci U S A. 116(47):23743-23752. doi: 10.1073/pnas.1912625116.
  28. Huang, M. et al. (2019). Differences in cellular damages induced by dielectric barrier discharge plasma between Salmonella Typhimurium and Staphylococcus aureus. Bioelectrochemistry. doi: 10.1016/j.bioelechem.2019.107445.
  29. Mehri, N. et al. (2019). Effects of vitamin D in an animal model of Alzheimer's disease: behavioral assessment with biochemical investigation of Hippocampus and serum. Metab Brain Dis. doi: 10.1007/s11011-019-00529-7.
  30. Zhang, L. et al. (2019). piR-31470 epigenetically suppresses the expression of glutathione S-transferase pi 1 in prostate cancer via DNA methylation. Cell Signal. doi: 10.1016/j.cellsig.2019.109501.