8-OHdG DNA Damage ELISA

8-OHdG DNA Damage ELISA
  • Detect as little as 100 pg/mL of 8-OHdG
  • Suitable for use with urine, serum, cells or tissues
  • 8-OHdG standard included for absolute quantitation

 

Frequently Asked Questions about this product

General FAQs about Oxidative Stress

Video: Color Development in an ELISA

Email To BuyerPrint this PageCopy Link
Ordering

Please contact your distributor for pricing.

OxiSelect™ Oxidative DNA Damage ELISA Kit (8-OHdG Quantitation), Trial Size
Catalog Number
STA-320-T
Size
32 assays
Detection
Colorimetric
Manual/Data Sheet Download
SDS Download
Price
$410.00
OxiSelect™ Oxidative DNA Damage ELISA Kit (8-OHdG Quantitation)
Catalog Number
STA-320
Size
96 assays
Detection
Colorimetric
Manual/Data Sheet Download
SDS Download
Price
$820.00
OxiSelect™ Oxidative DNA Damage ELISA Kit (8-OHdG Quantitation)
Catalog Number
STA-320-5
Size
5 x 96 assays
Detection
Colorimetric
Manual/Data Sheet Download
SDS Download
Price
$3,535.00
Product Details

Among numerous types of oxidative DNA damage, 8-hydroxydeoxyguanosine (8-OHdG) is a ubiquitous marker of oxidative stress. 8-OHdG, one of the byproducts of oxidative DNA damage, is physiologically formed and enhanced by chemical carcinogens.

Our OxiSelect™ Oxidative DNA Damage ELISA Kit (8-hydroxydeoxyguanosine assay) provides a powerful method for rapid, sensitive quantitation of 8-OHdG in DNA samples.

8-OHdG ELISA Standard Curve

8-OHdG Levels in Human Urine.

Recent Product Citations
  1. Całyniuk, Z. et al. (2021). Selected metabolic, epigenetic, nitration and redox parameters in turkeys fed diets with different levels of arginine and methionine. Ann. Anim. Sci. doi: 10.2478/aoas-2021-0069.
  2. Chan, T.K. et al. (2021). Polycyclic aromatic hydrocarbons regulate the pigmentation pathway and iinduce DNA damage responses in keratinocytes, a process driven by systemic immunity. J Dermatol Sci. doi: 10.1016/j.jdermsci.2021.09.003.
  3. Kim, H.C. et al. (2021). Glycyrrhizin ameliorating sterile inflammation induced by low-dose radiation exposure. Sci Rep. 11(1):18356. doi: 10.1038/s41598-021-97800-8.
  4. Li, H. et al. (2021). Striatal oxidative damages and neuroinflammation correlate with progression and survival of Lewy body and Alzheimer diseases. Neural Regen Res. 17(4):867-874. doi: 10.4103/1673-5374.322463.
  5. Pérez-Soto, E. et al. (2021). Proinflammatory and Oxidative Stress States Induced by Human Papillomavirus and Chlamydia trachomatis Coinfection Affect Sperm Quality in Asymptomatic Infertile Men. Medicina (Kaunas). 57(9):862. doi: 10.3390/medicina57090862.
  6. Boudjema, J. et al. (2021). Metal enriched quasi-ultrafine particles from stainless steel gas metal arc welding induced genetic and epigenetic alterations in BEAS-2B cells. NanoImpact. doi: 10.1016/j.impact.2021.100346.
  7. Li, J. & Min, Y. (2021). Pre-clinical evidence that salinomycin is active against retinoblastoma via inducing mitochondrial dysfunction, oxidative damage and AMPK activation. J Bioenerg Biomembr. 53(5):513-523. doi: 10.1007/s10863-021-09915-2.
  8. Ognik, K. et al. (2021). The immune status, oxidative and epigenetic changes in tissues of turkeys fed diets with different ratios of arginine and lysine. Sci Rep. 11(1):15975. doi: 10.1038/s41598-021-95529-y.
  9. Wadikar, D.L. et al. (2021). Assessment of occupational exposure to diesel particulate matter through evaluation of 1-nitropyrene and 1-aminopyrene in surface coal miners, India. Environ Monit Assess. 193(6):342. doi: 10.1007/s10661-021-09121-y.
  10. Fatima, S. et al. (2021). Epigallocatechin gallate and coenzyme Q10 attenuate cisplatin-induced hepatotoxicity in rats via targeting mitochondrial stress and apoptosis. J Biochem Mol Toxicol. doi: 10.1002/jbt.22701.
  11. Ahmad, A. et al. (2021). Swertia chirayita suppresses the growth of non-small cell lung cancer A549 cells and concomitantly induces apoptosis via downregulation of JAK1/STAT3 pathway. Saudi J Biol Sci. doi: 10.1016/j.sjbs.2021.06.085.
  12. Xue, Z. et al. (2021). Isorhapontigenin ameliorates cerebral ischemia/reperfusion injury via modulating Kinase Cε/Nrf2/HO-1 signaling pathway. Brain Behav. doi: 10.1002/brb3.2143.
  13. Jiang, J. et al. (2021). Impact of intrauterine fetal resuscitation with oxygen on oxidative stress in the developing rat brain. Sci Rep. 11(1):9798. doi: 10.1038/s41598-021-89299-w.
  14. Jacobson, M.H. et al. (2021). Organophosphate pesticides and progression of chronic kidney disease among children: A prospective cohort study. Environ Int. 155:106597. doi: 10.1016/j.envint.2021.106597.
  15. Oladosu, W.O. et al. (2021). Evaluating the Effects of Life styles and History of Exposure to Radiation on Levels of Significance and Severity of Sperm DNA Damage among Males with Infertility Using 8-Hydroxydeoxyguanosine (8-OHDG) as a Marker. EC Endocrinology and Metabolic Research. 6(4): 15-27.
  16. Shaw, P. et al. (2021). Cold Atmospheric Plasma Increases Temozolomide Sensitivity of Three-Dimensional Glioblastoma Spheroids via Oxidative Stress-Mediated DNA Damage. Cancers. 13(8):1780. doi: 10.3390/cancers13081780.
  17. Sener, T.E. et al. (2020). Effects of resveratrol against scattered radiation-induced testicular damage in rats. Turk Biyokim Derg. doi: 10.1515/tjb-2020-0320.
  18. Corinaldesi, C. et al. (2021). Multiple impacts of microplastics can threaten marine habitat-forming species. Commun Biol. 4(1):431. doi: 10.1038/s42003-021-01961-1.
  19. Wahjuni, S. et al. (2021). Green Mustard Ethanol Extract (Brassica Rapa L.) Leaf Can Cell Damage (8-Hydroxy-2-Dioxiguanosine) In The Wistar Rat Hyperglicemic. IOP Conf. Ser.: Earth Environ. Sci. doi: 10.1088/1755-1315/709/1/012046.
  20. Jankowski, J. et al. (2021). The effect of different dietary ratios of lysine, arginine and methionine on protein nitration and oxidation reactions in turkey tissues and DNA. Animal. doi: 10.1016/j.animal.2021.100183.
  21. Xie, W. et al. (2021). Pterostilbene accelerates wound healing by modulating diabetes-induced estrogen receptor β suppression in hematopoietic stem cells. Burns Trauma. doi: 10.1093/burnst/tkaa045.
  22. Guo, L. et al. (2021). Nephroprotective Effect of Adropinin Against Streptozotocin-Induced Diabetic Nephropathy in Rats: Inflammatory Mechanism and YAP/TAZ Factor. Drug Des Devel Ther. 15:589-600. doi: 10.2147/DDDT.S294009.
  23. Lu, Y. et al. (2021). ShengMai-San Attenuates Cardiac Remodeling in Diabetic Rats by Inhibiting NOX-Mediated Oxidative Stress. Diabetes Metab Syndr Obes. doi: 10.2147/DMSO.S287582.
  24. Ohira, H. et al. (2021). Alteration of oxidative-stress and related marker levels in mouse colonic tissues and fecal microbiota structures with chronic ethanol administration: Implications for the pathogenesis of ethanol-related colorectal cancer. PLoS One. 16(2):e0246580. doi: 10.1371/journal.pone.0246580.
  25. Cortés, S. et al. (2021). A Positive Relationship between Exposure to Heavy Metals and Development of Chronic Diseases: A Case Study from Chile. Int J Environ Res Public Health. 18(4):1419. doi: 10.3390/ijerph18041419.
  26. Yang, S.B. et al. (2021). A Hepatitis B Virus-Derived Peptide Exerts an Anticancer Effect via TNF/iNOS-producing Dendritic Cells in Tumor-Bearing Mouse Model. Cancers (Basel). 13(3):407. doi: 10.3390/cancers13030407.
  27. Liu, J. et al. (2021). NUPR1 is a critical repressor of ferroptosis. Nat Commun. 12(1):647. doi: 10.1038/s41467-021-20904-2.
  28. Wang, M. et al. Fluvastatin protects neuronal cells from hydrogen peroxide-induced toxicity with decreasing oxidative damage and increasing PI3K/Akt/mTOR signaling. J Pharm Pharmacol. doi: 10.1093/jpp/rgaa058.
  29. Tascanov, M.B. et al. (2021). Relationships between paroxysmal atrial fibrillation, total oxidant status, and DNA damage. Rev Port Cardiol. 40(1):5-10. doi: 10.1016/j.repc.2020.05.011.
  30. Nikolova, B. et al. (2020). Redox-related Molecular Mechanism of Sensitizing Colon Cancer Cells to Camptothecin Analog SN38. Anticancer Res. 40(9):5159-5170. doi: 10.21873/anticanres.14519.