Total Glutathione Assay

Total Glutathione Assay
  • Measures total glutathione (oxidized and reduced)
  • Sensitive detection as low as 8 nM
  • Suitable for use with serum, plasma, saliva, urine, tissue extracts, and mammalian or plant cell lysates


Frequently Asked Questions about this product

General FAQs about Oxidative Stress

Email To BuyerPrint this PageCopy Link

Please contact your distributor for pricing.

OxiSelect™ Total Glutathione (GSSG/GSH) Assay Kit
Catalog Number
100 assays
Manual/Data Sheet Download
SDS Download
Product Details

The OxiSelect™ Total Glutathione Assay Kit is a quantitative assay for measuring the total glutathione content within a sample (GSH/GSSG).  Glutathione Reductase reduces oxidized glutathione (GSSG) to reduced glutathione (GSH) in the presence of NADPH.  Subsequently, the  chromogen reacts with the thiol group of GSH to produce a colored compound that absorbs at 405 nm.  The total glutathione content in unknown samples is determined by comparison with the predetermined glutathione standard curve.  The rate of chromophore production is proportional to the concentration of glutathione within the sample.  The rate can be determined from the absorbance change over time.  Metaphosphoric acid is provided to remove interfering proteins or enzymes from samples.

GSSG Standard Curve. OD 405nm versus incubation time as a function of GSSG concentration.

Recent Product Citations
  1. Althobaiti, N.A. et al. (2021). Assessment and Validation of Globodera pallida as a Novel In Vivo Model for Studying Alzheimer's Disease. Cells. 10(9):2481. doi: 10.3390/cells10092481.
  2. Całyniuk, Z. et al. (2021). Selected metabolic, epigenetic, nitration and redox parameters in turkeys fed diets with different levels of arginine and methionine. Ann. Anim. Sci. doi: 10.2478/aoas-2021-0069.
  3. Azarova, I. et al. (2021). The Link between Type 2 Diabetes Mellitus and the Polymorphisms of Glutathione-Metabolizing Genes Suggests a New Hypothesis Explaining Disease Initiation and Progression. Life (Basel). 11(9):886. doi: 10.3390/life11090886.
  4. Kozłowski, K. et al. (2021). Growth performance, immune status and intestinal fermentative processes of young turkeys fed diet with additive of full fat meals from Tenebrio molitor and Hermetia illucens. Anim Feed Sci Technol. doi: 10.1016/j.anifeedsci.2021.114994.
  5. Almarhoun, M. et al. (2021). Overexpression of STARD3 attenuates oxidized LDL-induced oxidative stress and inflammation in retinal pigment epithelial cells. Biochim Biophys Acta Mol Cell Biol Lipids. 1866(7):158927. doi: 10.1016/j.bbalip.2021.158927.
  6. Gupta, S. et al. (2021). Glutathione is a potential therapeutic target for acrolein toxicity in the cornea. Toxicol Lett. doi: 10.1016/j.toxlet.2021.01.005.
  7. Nour, M.A. et al. (2021). Productive performance, fertility and hatchability, blood indices and gut microbial load in laying quails as affected by two types of probiotic bacteria. Saudi J Biol Sci. doi: 10.1016/j.sjbs.2021.07.030.
  8. Kikuchi, M. et al. (2021). Effects of glucoraphanin-rich broccoli sprout extracts on sleep quality in healthy adults: An exploratory study. J Funct Foods. doi: 10.1016/j.jff.2021.104574.
  9. Jiang, J. et al. (2021). Impact of intrauterine fetal resuscitation with oxygen on oxidative stress in the developing rat brain. Sci Rep. 11(1):9798. doi: 10.1038/s41598-021-89299-w.
  10. Jankowski, J. et al. (2021). The effect of different dietary ratios of lysine, arginine and methionine on protein nitration and oxidation reactions in turkey tissues and DNA. Animal. doi: 10.1016/j.animal.2021.100183.
  11. de Los Santos-Jiménez, J. et al. (2021). Glutaminase isoforms expression switches microRNA levels and oxidative status in glioblastoma cells. J Biomed Sci. 28(1):14. doi: 10.1186/s12929-021-00712-y.
  12. Rafeeq, M. et al. (2021). Protective effect of 6-paradol in acetic acid-induced ulcerative colitis in rats. BMC Complement Med Ther. 21(1):28. doi: 10.1186/s12906-021-03203-7.
  13. Zapata‐Londono, M.B. et al. (2020). Effect of mango (Mangifera indica) cv. azÚcar juice consumption on plasma antioxidant capacity and oxidative stress biomarkers. Vitae. 27(1):1‐10. doi: 10.17533/udea.vitae.v27n1a03.
  14. Sanz-González, S.M. et al. (2020). Clinical and Molecular-Genetic Insights into the Role of Oxidative Stress in Diabetic Retinopathy: Antioxidant Strategies and Future Avenues. Antioxidants (Basel). 9(11):E1101. doi: 10.3390/antiox9111101.
  15. Bakalova, R. et al. (2020). Selective Targeting of Cancerous Mitochondria and Suppression of Tumor Growth Using Redox-Active Treatment Adjuvant. Oxid Med Cell Longev. doi: 10.1155/2020/6212935.
  16. Holanda, D.M. et al. (2020). Efficacy of Mycotoxin Detoxifiers on Health and Growth of Newly-Weaned Pigs under Chronic Dietary Challenge of Deoxynivalenol. Toxins (Basel). 12(5):311. doi: 10.3390/toxins12050311.
  17. Wardhani, B.W.K. et al. (2020). Antifibrotic Activity of Phaleria macrocarpa Extract in Rat Liver-fibrosis Model: Focus on Oxidative Stress Markers, TGF-β1 and MMP-13. Open Access Maced J Med Sci. 8(A):555-562. doi: 10.3889/oamjms.2020.4929.
  18. Park, D.W. et al. (2020). Hepatoprotective effect of Centella asiatica 50% ethanol extract against acetaminophen-induced acute liver injury in BALB/c mice. Toxicol Res. doi: 10.1007/s43188-020-00063-0.
  19. Cho, D.H. et al. (2020). Protective Effects of Statin and Angiotensin Receptor Blocker in a Rat Model of Doxorubicin- and Trastuzumab-Induced Cardiomyopathy. J Am Soc Echocardiogr. S0894-7317(20)30328-X. doi: 10.1016/j.echo.2020.05.021.
  20. Cázares-Cortazar, A. et al. (2020). A decrease in hepatitis C virus RNA to undetectable levels in chronic hepatitis C patients after PegIFNα + RVB or sofosbuvir + NS5A inhibitor treatment is associated with decreased insulin resistance and persistent oxidative stress. Arch Virol. doi: 10.1007/s00705-020-04797-y.
  21. Kuo, H.L. et al. (2020). s-Ethyl cysteine, an amino acid derivative, attenuated cisplatin induced nephrotoxicity. Amino Acids. doi: 10.1007/s00726-020-02882-9.
  22. Holanda, D.M. et al. (2020). Investigation of the Efficacy of a Postbiotic Yeast Cell Wall-Based Blend on Newly-Weaned Pigs under a Dietary Challenge of Multiple Mycotoxins with Emphasis on Deoxynivalenol. Toxins. 12(8):504. doi: 10.3390/toxins12080504.
  23. Kang, M.A. et al. (2020). Auricularia auricula increases an apoptosis in human hepatocellular carcinoma cells via a regulation of the peroxiredoxin1. J Food Biochem. doi: 10.1111/jfbc.13373.
  24. Ognik, K. et al. (2020). Antioxidant Status and Liver Function of Young Turkeys Receiving a Diet with Full-Fat Insect Meal from Hermetia illucens. Animals (Basel). 10(8):E1339. doi: 10.3390/ani10081339.
  25. Lim, H.S. et al. (2020). The insect molting hormone 20-hydroxyecdysone protects dopaminergic neurons against MPTP-induced neurotoxicity in a mouse model of Parkinson’s disease. Free Radic Biol Med. doi: 10.1016/j.freeradbiomed.2020.07.010.
  26. Pelster, B. et al. (2020).  Cellular oxygen consumption, ROS production and ROS defense in two different size-classes of an Amazonian obligate air-breathing fish (Arapaima gigas). PLoS One. 15(7):e0236507. doi: 10.1371/journal.pone.0236507.
  27. Azarova, I. et al. Genetic variants in glutamate cysteine ligase confer protection against type 2 diabetes. Mol Biol Rep. doi: 10.1007/s11033-020-05647-5.
  28. Bian, X. et al. (2020). In-depth Mapping Carboxylic Acid Metabolome Reveals the Potential Biomarkers in Colorectal Cancer through Characteristic Fragment Ions and Metabolic Flux. Analytica Chimica Acta. doi: 10.1016/j.aca.2020.06.064.
  29. Son, E.S. et al. (2020). Effects of antioxidants on oxidative stress and inflammatory responses of human bronchial epithelial cells exposed to particulate matter and cigarette smoke extract. Toxicol In Vitro. doi: 10.1016/j.tiv.2020.104883.
  30. Palanisamy, A. et al. (2020). In utero exposure to transient ischemia-hypoxemia promotes long-term neurodevelopmental abnormalities in male rat offspring. JCI Insight. 5(10):133172. doi: 10.1172/jci.insight.133172.