MDA Adduct Competitive ELISA

MDA Adduct Competitive ELISA
  • Detect as little as 6 pmol/mL of malondialdehyde
  • More specific for MDA than traditional TBARS assay

 

Frequently Asked Questions about this product

General FAQs about Oxidative Stress

Video: Color Development in an ELISA

Email To BuyerPrint this PageCopy Link
Ordering

Please contact your distributor for pricing.

OxiSelect™ MDA Adduct Competitive ELISA Kit
Catalog Number
STA-832
Size
96 assays
Detection
Colorimetric
Manual/Data Sheet Download
SDS Download
Price
$685.00
OxiSelect™ MDA Adduct Competitive ELISA Kit, Trial Size
Catalog Number
STA-832-T
Size
32 assays
Detection
Colorimetric
Manual/Data Sheet Download
SDS Download
Price
$335.00
OxiSelect™ MDA Adduct Competitive ELISA Kit
Catalog Number
STA-832-5
Size
5 x 96 assays
Detection
Colorimetric
Manual/Data Sheet Download
SDS Download
Price
$2,950.00
Product Details

MDA, or malondialdehyde, is a widely accepted marker for oxidative stress. Our OxiSelect™ MDA Competitive ELISA Kit provides a sensitive, specific method for detection of this lipid peroxidation by-product.

Important Note: MDA adducts are not stable long term. For best results test all samples immediately upon collection, or freeze them at -80ºC for up to one month. MDA may be degraded in samples that have been frozen for longer periods; in such cases more reliable results may be obtained from more stable markers of oxidative stress such as protein carbonyl, 8-OHdG or 4-HNE.

Recent Product Citations
  1. Qin, L. et al. (2021). Systemic Profiles of microRNAs, Redox Balance, and Inflammation in Lung Cancer Patients: Influence of COPD. Biomedicines. 9(10):1347. doi: 10.3390/biomedicines9101347.
  2. Malkov, A. et al. (2021). Aβ initiates brain hypometabolism, network dysfunction and behavioral abnormalities via NOX2-induced oxidative stress in mice. Commun Biol. 4(1):1054. doi: 10.1038/s42003-021-02551-x.
  3. Zhang, Y. et al. (2021). Neuroprotective effect of the somatostatin receptor 5 agonist L-817,818 on retinal ganglion cells in experimental glaucoma. Exp Eye Res. 204:108449. doi: 10.1016/j.exer.2021.108449.
  4. Satta, H. et al. (2021) Amelioration of hemodialysis-induced oxidative stress and fatigue with a hemodialysis system employing electrolyzed water containing molecular hydrogen. Ren Replace Ther. doi: 10.1186/s41100-021-00353-9.
  5. Li, Y. et al. (2021). Blue Light Induces Impaired Autophagy through Nucleotide-Binding Oligomerization Domain 2 Activation on the Mouse Ocular Surface. Int. J. Mol. Sci. 22(4):2015. doi: 10.3390/ijms22042015.
  6. Dong, S. et al. (2021). Leukemia inhibitory factor protects photoreceptor cone cells against oxidative damage through activating JAK/STAT3 signaling. Ann Transl Med. 9(2):152. doi: 10.21037/atm-20-8040.
  7. Clark, D. et al. (2021). A Randomized Double-Masked Phase 2a Trial to Evaluate Activity and Safety of Topical Ocular Reproxalap, a Novel RASP Inhibitor, in Dry Eye Disease. J Ocul Pharmacol Ther. doi: 10.1089/jop.2020.0087.
  8. Alfarisi, H.A.H. et al. (2020).  Hepatoprotective Effects of a Novel Trihoney against Nonalcoholic Fatty Liver Disease: A Comparative Study with Atorvastatin. The Scientific World Journal. doi: 10.1155/2020/4503253.
  9. Pacifici, F. et al. (2020). Prdx6 Plays a Main Role in the Crosstalk Between Aging and Metabolic Sarcopenia. Antioxidants (Basel). 9(4). pii: E329. doi: 10.3390/antiox9040329.
  10. Yang, J. et al. (2020). Sorting nexin 1 loss results in increased oxidative stress and hypertension. FASEB J. doi: 10.1096/fj.201902448R.
  11. Zhu, H. et al. (2020). Effect of Certain Quinones on Adenosine Triphosphate Level in Human Bladder Cancer Cells. Indian J Pharm Sci. 2020:82(1)spl issue2;1-6.
  12. Shimizu, Y. et al. (2020). Role of DJ‐1 in Modulating Glycative Stress in Heart Failure. J Am Heart Assoc. 9(4). doi: 10.1161/jaha.119.014691.
  13. El-Boshy, M. et al. (2020). Vitamin D3 and calcium cosupplementation alleviates cadmium hepatotoxicity in the rat: Enhanced antioxidative and anti-inflammatory actions by remodeling cellular calcium pathways. J Biochem Mol Toxicol. doi: 10.1002/jbt.22440.
  14. Ognik, K. et al. (2019). The effect of a rat diet without added Cu on redox status in tissues and epigenetic changes in the brain. Annals of Animal Science. doi: 10.2478/aoas-2019-0075.
  15. Katz, G.M. et al. (2019). Effects of genetic transfection on calcium cycling pathways mediated by double-stranded adeno-associated virus in post-infarction remodeling. J Thorac Cardiovasc Surg. doi: 10.1016/j.jtcvs.2019.08.089.
  16. Chiang, S.S. et al. (2019). Role of Camellia brevistyla (Hayata) Coh. Stuart Seed Pomace Extract on Hypertension and Vascular Function in L-NAME-Treated Mice. J Food Sci. doi: 10.1111/1750-3841.14913.
  17. Du, Y. et al. (2019). Chlorinated effluent organic matter causes higher toxicity than chlorinated natural organic matter by inducing more intracellular reactive oxygen species. Sci Total Environ. 701:134881. doi: 10.1016/j.scitotenv.2019.134881.
  18. Xu, A. et al. (2019). Protective effect of lycopene on testicular toxicity induced by Benzo[a]pyrene intake in rats. Toxicology. doi: 10.1016/j.tox.2019.152301.
  19. Saw, T.Y. et al. (2019). Oral Supplementation of Tocotrienol-Rich Fraction Alleviates Severity of Ulcerative Colitis in Mice. J Nutr Sci Vitaminol (Tokyo). 65(4):318-327. doi: 10.3177/jnsv.65.318.
  20. Karagenç, N. et al. (2019). Transfer of mouse blastocysts exposed to ambient oxygen levels can lead to impaired lung development and redox balance. Molecular Human Reproduction. doi: 10.1093/molehr/gaz052.
  21. Blanco-Rayón, E. et al. (2019). Food-type may jeopardize biomarker interpretation in mussels used in aquatic toxicological experimentation. PLoS One. 14(8):e0220661. doi: 10.1371/journal.pone.0220661.
  22. Suvakov, S. et al. (2019). Markers of Oxidative Stress and Endothelial Dysfunction Predict Haemodialysis Patients Survival. Am J Nephrol. doi: 10.1159/000501300.
  23. Brandao, J.C.M. et al. (2019). Effects of intra-abdominal pressure in rat lung tissues after pneumoperitoneum. Int J Clin Exp Med. 12(7):8309-8317.
  24. Jerotic, D. et al. (2019). Association of Nrf2, SOD2 and GPX1 Polymorphisms with Biomarkers of Oxidative Distress and Survival in End-Stage Renal Disease Patients. Toxins (Basel). 11(7). pii: E431. doi: 10.3390/toxins11070431.
  25. Nam, Y. et al. (2019). Salivary biomarkers of inflammation and oxidative stress in healthy adults. Arch Oral Biol. 97:215-222. doi: 10.1016/j.archoralbio.2018.10.026.
  26. Baćević, M. et al. (2019). Leukocyte- and platelet-rich fibrin as graft material improves microRNA-21expression and decreases oxidative stress in the calvarial defects of diabetic rabbits. Archives of Oral Biology. 102(2019):231-237. doi: 10.1016/j.archoralbio.2019.05.005.
  27. Thosar, S. S. et al. (2019). Circadian Rhythm of Vascular Function in Midlife Adults. Arterioscler Thromb Vasc Biol. doi: 10.1161/atvbaha.119.312682.
  28. Kim, J.E. et al. (2019). The role of nuclear factor erythroid-2-related factor 2 expression in radiocontrast-induced nephropathy. Sci Rep. 9(1):2608. doi: 10.1038/s41598-019-39534-2.
  29. Nakamura, Y. et al. (2019). Depletion of B cell-activating factor attenuates hepatic fat accumulation in a murine model of nonalcoholic fatty liver disease. Sci Rep. 9(1):977. doi: 10.1038/s41598-018-37403-y.
  30. Chowdhury, A. et al. (2018). Effect of polyhexamethylene biguanide on rat liver. Toxicol Lett. 285:94-103. doi: 10.1016/j.toxlet.2017.12.032.