Protein Carbonyl Immunoblot Kit

Protein Carbonyl Immunoblot Kit
  • DNPH derivatization after blotting allows direct comparison of oxidized and non-oxidized protein fingerprints
  • Suitable for plasma, serum, cell lysates or purified proteins


Frequently Asked Questions about this product

General FAQs about Oxidative Stress

Email To BuyerPrint this PageCopy Link

Please contact your distributor for pricing.

OxiSelect™ Protein Carbonyl Immunoblot Kit
Catalog Number
10 blots
Manual/Data Sheet Download
SDS Download
Product Details

The most common products of protein oxidation in biological samples are the carbonyl derivatives of proline, lysine, arginine and threonine residues. Such derivatives are chemically stable and serve as markers for oxidative stress in most types of reactive oxygen species.

Our OxiSelect™ Protein Carbonyl Immunoblot Kit provides a rapid, efficient method for the detection of protein carbonyl residues. The immunoblot format provides a convenient way to compare oxidized and non-oxidized protein fingerprints.

Assay Principle for the OxiSelect™ Protein Oxidation Immunoblot Kit.

Recent Product Citations
  1. Song, W. et al. (2020). Baicalin combats glutamate excitotoxicity via protecting glutamine synthetase from ROS-induced 20S proteasomal degradation. Redox Biol. doi: 10.1016/j.redox.2020.101559.
  2. Capó, X. et al. (2020). Calorie Restriction Improves Physical Performance and Modulates the Antioxidant and Inflammatory Responses to Acute Exercise. Nutrients. 12:930. doi: 10.3390/nu12040930.
  3. Pons, D.G. et al. (2020). Micronutrients Selenomethionine and Selenocysteine Modulate the Redox Status of MCF-7 Breast Cancer Cells. Nutrients. 12(3). pii: E865. doi: 10.3390/nu12030865.
  4. Tian, L. et al. (2020). Impaired Mitochondrial Function Results from Oxidative Stress in the Full-Term Placenta of Sows with Excessive Back-Fat. Animals (Basel). 10(2). pii: E360. doi: 10.3390/ani10020360.
  5. Geicu, O.I. et al. (2020). Dietary AGEs involvement in colonic inflammation and cancer: insights from an in vitro enterocyte model. Sci Rep. 10(1):2754. doi: 10.1038/s41598-020-59623-x.
  6. Yin, B. et al. (2019). PtomtAPX, a mitochondrial ascorbate peroxidase, plays an important role in maintaining the redox balance of Populus tomentosa Carr. Sci Rep. 9(1):19541. doi: 10.1038/s41598-019-56148-w.
  7. Adeluyi, A. et al. (2019). Microglia morphology and proinflammatory signaling in the nucleus accumbens during nicotine withdrawal. Sci Adv. 5(10):eaax7031. doi: 10.1126/sciadv.aax7031.
  8. Koike, S. et al. (2019). Age-related alteration in the distribution of methylglyoxal and its metabolic enzymes in the mouse brain. Brain Res Bull. 144:164-170. doi: 10.1016/j.brainresbull.2018.11.025.
  9. Park, A.M. et al. (2018). Heat shock protein 27 promotes cell cycle progression by down-regulating E2F transcription factor 4 and retinoblastoma family protein p130. J Biol Chem. 293(41):15815-15826. doi: 10.1074/jbc.RA118.003310.
  10. Hernández-López, R. et al. (2018). Non-tumor adjacent tissue of advanced stage from CRC shows activated antioxidant response. Free Radic Biol Med. 126:249-258. doi: 10.1016/j.freeradbiomed.2018.08.021.
  11. Harmon, D.B. et al. (2018). Adipose tissue-derived free fatty acids initiate myeloid cell accumulation in mouse liver in states of lipid oversupply. Am J Physiol Endocrinol Metab. 315(5):E758-E770. doi: 10.1152/ajpendo.00172.2018.
  12. Wei, Y. et al. (2018). Oxidation of KCNB1 channels in the human brain and in mouse model of Alzheimer's disease. Cell Death Dis. 9(8):820. doi: 10.1038/s41419-018-0886-1.
  13. Oliveira, A.N. et al. (2018). Effect of Tim23 knockdown in vivo on mitochondrial protein import and retrograde signaling to the UPRmt in muscle. Am J Physiol Cell Physiol. 315(4):C516-C526. doi: 10.1152/ajpcell.00275.2017.
  14. Pooja. et al. (2018). Post-translational modifications of eNOS augment nitric oxide availability and facilitates hypoxia adaptation in Ladakhi women. Nitric Oxide. 78:103-112. doi: 10.1016/j.niox.2018.06.003.
  15. Mitchell, S.J. et al. (2018). Nicotinamide Improves Aspects of Healthspan, but Not Lifespan, in Mice. Cell Metab. 27(3):667-676.e4. doi: 10.1016/j.cmet.2018.02.001.
  16. Opalińska, M. et al. (2017). Identification of Physiological Substrates and Binding Partners of the Plant Mitochondrial Protease FTSH4 by the Trapping Approach. Int J Mol Sci. 18(11). pii: E2455. doi: 10.3390/ijms18112455.
  17. Li, Y. et al. (2017). Changes in the mitochondrial protein profile due to ROS eruption during ageing of elm (Ulmus pumila L.) seeds. Plant Physiol Biochem. 114:72-87. doi: 10.1016/j.plaphy.2017.02.023.
  18. Konopka, A.R. et al. (2017). Influence of Nrf2 activators on subcellular skeletal muscle protein and DNA synthesis rates after 6 weeks of milk protein feeding in older adults. Geroscience. doi: 10.1007/s11357-017-9968-8.
  19. Kazi, R.S. et al. (2017). Glycation inhibitors extend yeast chronological lifespan by reducing advanced glycation end products and by back regulation of proteins involved in mitochondrial respiration. J Proteomics. doi: 10.1016/j.jprot.2017.01.015.
  20. Galmes-Pascual, B.M. et al. (2016). 17ß-estradiol improves hepatic mitochondrial biogenesis and function through PGC1B. J. Endocrinol. 232:297-308.
  21. Su, L. et al. (2016). Reactive oxygen species induced by cold stratification promote germination of Hedysarum scoparium seeds. Plant Physiol. Biochem. 109:406-415.
  22. Ferrer, M.D. et al. (2016). Haem biosynthesis and antioxidant enzymes in circulating cells of acute intermittent porphyria patients. PLoS One doi:10.1371/journal.pone.0164857.
  23. Capo, X. et al. (2016). Effects of dietary almond-and olive oil-based docosahexaenoic- and vitamin E-enriched beverage supplementation on athletic performance and oxidative stress. Food Funct. 7:4920-4934.
  24. Chaves, R. S. et al. (2016). Presence of insoluble Tau following rotenone exposure ameliorates basic pathways associated with neurodegeneration. IBRO Rep. doi:10.1016/j.ibror.2016.09.001.
  25. Almeida, M. F. et al.. Aged Lewis rats exposed to low and moderate doses of rotenone are a good model for studying the process of protein aggregation and its effects upon central nervous system cell physiology. Arq Neuropsiquiatr74:737-744.
  26. Ong, L. K. et al. (2016). Reconsidering the role of glial cells in chronic stress-induced dopaminergic neurons loss within the substantia nigra? Friend or foe?. Brain Behav Immun.  doi:10.1016/j.bbi.2016.10.001.
  27. Busquets-Cortés, C. et al. (2016). Training enhances immune cells mitochondrial biosynthesis, fission, fusion, and their antioxidant capabilities synergistically with dietary docosahexaenoic supplementation. Oxid Med Cell Longev. doi:10.1155/2016/8950384.
  28. Hudgens, J. L. et al. (2016). Platelet-rich plasma activates proinflammatory signaling pathways and induces oxidative stress in tendon fibroblasts. Am J Sports Med. doi:10.1177/0363546516637176.
  29. Laitano, O. et al. (2016). Pharmacological targeting of mitochondrial reactive oxygen species counteracts diaphragm weakness in chronic heart failure. J Appl Physiol. doi:10.1152/japplphysiol.00822.2015.
  30. Tanase, M. et al. (2016). Role of carbonyl modifications on aging-associated protein aggregation. Sci Rep. doi:10.1038/srep19311.