Rho Kinase (ROCK) Activity Assay, 96-Well

  • Safe non-radioactive ELISA format
  • Active ROCK-II included as positive control

 

Frequently Asked Questions about this product

Email To BuyerPrint this PageCopy Link
Ordering

Please contact your distributor for pricing.

96-Well ROCK Activity Assay Kit
Catalog Number
STA-416
Size
96 assays
Detection
Colorimetric
Manual/Data Sheet Download
SDS Download
Price
$695.00
96-Well ROCK Activity Assay Kit
Catalog Number
STA-416-5
Size
5 x 96 assays
Detection
Colorimetric
Manual/Data Sheet Download
SDS Download
Price
$2,995.00
Product Details

Rho-associated Kinase (ROCK) mediates Rho signaling and reorganizes the actin cytoskeleton by phosphorylation of several substrates that contribute to the assembly of actin filaments and contractility. ROCK inactivates myosin phosphatase through the specific phosphorylation of myosin phosphatase target subunit 1 (MYPT1) at Thr-696, which results in an increase in the phosphorylated content of the 20-kDa myosin light chain (MLC20).

Our 96-Well ROCK Activity Assay Kit uses a safe, non-radioactive format to measure the level of active Rho Kinase in cell or tissue lysates. The kit contains a strip-well plate pre-coated with recombinant MYPT1.

96-Well ROCK Activity Assay Principle

Results from the 96-Well ROCK Activity Assay. Top: Active ROCK-II in 10 µL was incubated with 90 µL of 1X Kinase Reaction Buffer for 60 minutes at 30ºC. Bottom: 2.5 ng of active ROCK-II in 10 µL was incubated with 90 µL of 1X Kinase Reaction Buffer at 30ºC for various incubation times as shown. Phosphorylation of MYPT1 substrate was detected by anti-phospho-MYPT1 (Thr-696) antibody according to the assay protocol.

Recent Product Citations
  1. Yan, S. et al. (2016). MMP inhibitor Ilomastat induced amoeboid-like motility via activation of the Rho signaling pathway in glioblastoma cells. Tumor Biology doi:10.1007/s13277-016-5464-5.
  2. Rozo, C. et al. (2016). Targeting the RhoA-ROCK pathway to reverse T-cell dysfunction in SLE. Ann. Rheum. Dis. doi:10.1136/annrheumdis-2016-209850.
  3. Munoz, A. et al. (2016). Aging-related increase in Rho kinase activity in the nigral region is counteracted by physical exercise. J. Gerontol. A Biol. Sci. Med. Sci. 71:1257-1257.
  4. Prysyazhna, O. et al. (2016). Phosphodiesterase 5 inhibition limits doxorubicin-induced heart failure by attenuating protein kinase G oxidation. J Biol Chem.   doi:10.1074/jbc.M116.724070.
  5. El Azreq, M. A. et al. (2016). Discoidin domain receptor 1 promotes Th17 cell migration by activating the RhoA/ROCK/MAPK/ERK signaling pathway. Oncotarget.. doi:10.18632/oncotarget.10455.
  6. Yang, C. et al. (2016). Adropin reduces paracellular permeability of rat brain endothelial cells exposed to ischemia-like conditions. Peptides. doi:10.1016/j.peptides.2016.03.009.
  7. Özdemir, A. et al. (2016). Cardiac glycoside-induced cell death and Rho/Rho kinase pathway: Implication of different regulation in cancer cell lines. Steroids. doi:10.1016/j.steroids.2016.03.015.
  8. Weng, C. H. et al. (2016). Cigarette smoke inhibits ROCK2 activation in T cells and modulates IL-22 production. Mol Immunol. 71:115-122.
  9. Liu, Y. et al. (2015). ROCK inhibition impedes macrophage polarity and functions. Cell Immunol. doi:10.1016/j.cellimm.2015.12.005.
  10. Muñoz, A. et al. (2015). Aging-related increase in Rho kinase activity in the nigral region is counteracted by physical exercise.J Gerontol A Biol Sci Med Sci. doi:10.1093/gerona/glv179.
  11. Johnson, K. M. & Crocker, S. J. (2015). TIMP-1 couples RhoK activation to IL-1β-induced astrocyte responses. Neurosci Lett.  609:165-170.
  12. Al-Shboul, O. (2015). The role of the RhoA/ROCK pathway in gender-dependent differences in gastric smooth muscle contraction. J Physiol Sci. doi:10.1007/s12576-015-0400-9.
  13. Stamatovic, S. M. et al. (2015). PDCD10 (CCM3) regulates brain endothelial barrier integrity in cerebral cavernous malformation type 3: role of CCM3-ERK1/2-cortactin cross-talk. Acta Neuropathol.doi:10.1007/s00401-015-1479-z.
  14. Li, H. et al. (2015). KAP regulates ROCK2 and Cdk2 in an RNA-activated glioblastoma invasion pathway. Oncogene. 34:1432-1441.
  15. Singh, J. et al. (2015). Bimodal effect of oxidative stress in internal anal sphincter (IAS) smooth muscle. Am J Physiol Gastrointest Liver Physiol. doi: 10.1152/ajpgi.00125.2015.
  16. Jasińska-Stroschein, M. et al. (2015). Rosuvastatin intensifies the beneficial effects of Rho-kinase inhibitor in reversal of monocrotaline-induced pulmonary hypertension. Arch Med Sci.   doi:10.5114/aoms.2015.49740.
  17. Sasahara, T. et al. (2015). Epidermal growth factor induces Ca2+ sensitization through Rho-kinase-dependent phosphorylation of myosin phosphatase target subunit 1 in vascular smooth muscle. Eur J Pharmacol.  doi:10.1016/j.ejphar.2015.05.042.
  18. Wang, Z. C. et al. (2015). 28-Day hindlimb unweighting reduces expression of Rho kinase and inhibits its effects in femoral artery of rat.  J Physiol Biochem. doi:10.1007/s13105-015-0398-8.
  19. Aoqui, C. et al. (2014). Microvascular dysfunction in the course of metabolic syndrome induced by high-fat diet. Cardiovasc Diabetol. 13:1-11.
  20. Sai, X. et al. (2014).  Junctionally restricted RhoA activity is necessary for apical constriction during phase 2 inner ear placode invaginationDev Biol. 394:206-216.
  21. Moreau, S. et al. (2014). N-[11 C]-methyl-hydroxyfasudil is a potential biomarker of cardiac hypertrophy.  Nucl Med Biol. 42:192-197.
  22. Jasińska-Stroschein, M. et al. (2014). Concurrent Rho-kinase and tyrosine kinase platelet-derived growth factor inhibition in experimental pulmonary hypertension. Pharmacology. 93:145-150.
  23. Seo, J. H. et al. (2014). Directing stem cell differentiation by changing the molecular mobility of supramolecular surfaces. Adv Healthc Mater. doi: 10.1002/adhm.201400173.
  24. Bouchareb, R. et al. (2014). Mechanical strain induces the production of spheroid mineralized microparticles in the aortic valve through a RhoA/ROCK-dependent mechanism.  J Mol Cell Cardiol. 67:49-59.
  25. Weber, M et al. (2014). MiRNA-155 targets myosin light chain kinase and modulates actin cytoskeleton organization in endothelial cells. Am. J. Physiol. Heart Circ. Physiol. 306:H1192-H1203 (#STA-416).
  26. Narimatsu, T. et al. (2013). Disruption of Cell-Cell Junctions and Induction of Pathological Cytokines in the Retinal Pigment Epithelium of Light-Exposed Mice. Invest. Opthalmol. Vis. Sci. 54:4555-4562 (#STA-416).
  27. Singh, J. et al. (2013). Role of PKC and RhoA/ROCK Pathways in the Spontaneous Phasic Activity in the Rectal Smooth Muscle. Am J Physiol Gastrointest Liver Physiol. 304:G723-G731 (#STA-416).
  28. Barcia, C. et al. (2012). ROCK/Cdc42-Mediated Microglial Motility and Gliapse Formation Lead to Phagocytosis of Degenerating Dopaminergic Neurons in vivo. Sci Rep. 2:809.
  29. Zhang, W. et al. (2012). The Small GTPase RhoA Regulates the Contraction of Smooth Muscle Tissues by Catalyzing the Assembly of Cytoskeletal Signaling Complexes at Membrane Adhesion Sites. J. Biol. Chem. 287: 33966-34008.
  30. Burger, D. et al. (2012). Microparticles Induce Cell Cycle Arrest Through Redox-Sensitive Processes in Endothelial Cells: Implications in Vascular Senescence. JAHA. 1: e001842.
  31. DiPaolo, B.C. et al. (2012). Rho Kinase Signaling Pathways During Stretch in Primary Alveolar Epithelia. Am J Lung Cell Mol Physiol. 302: L992-L1002.
  32. Burger, D. et al. (2011). Endothelial Microparticle Formation by Angiotensin II is Mediated via Ang II Receptor Type I/NADPH Oxidase/Rho Kinase Pathways Targeted to Lipid Rafts. Arterioscler Thromb Vasc Biol. 31:1898-1907.
  33. Yotova, I.Y. et al. (2011). Abnormal Activation of Ras/Raf/MAPK and RhoA/ROCKII Signaling Pathways in Eutopic Endometrial Stromal cells of Patients with Endometriosis. Hum. Reprod. 10.1093/humrep/der010.
  34. Haas, B. et al. (2009). Protein Kinase G Controls Brown Fat Cell Differentiation and Mitochondrial Biogenesis. Sci. Signal. 2:ra78.