AAV-2 Packaging System

AAV-2 Packaging System
  • pHelper plasmid contains required E2A, E4, and VA RNA adenoviral genes; eliminates the need for a helper adenovirus
  • Packaging System contains packaging plasmids and GFP control vector; co-transfect with separate AAV expression vector containing your gene of interest


Frequently Asked Questions about AAV Expression and Packaging

General FAQs about using AAV

General FAQs about Viral Gene Delivery

Email To BuyerPrint this PageCopy Link

Please contact your distributor for pricing.

AAV-2 Helper Free Packaging System
Catalog Number
1 kit
Manual/Data Sheet Download
SDS Download
Map Download
Sequence Download
Product Details

The AAV Helper Free System produces recombinant AAV containing your gene of interest without the need to use a helper adenovirus. The adenoviral genes required for proper AAV packaging are provided in the pHelper plasmid (E2A, E4 and VA RNA) or in the 293 packaging cells (E1).

Viral Gene Delivery using the AAV Helper Free System.

Production and Transduction of AAV2-GFP. Top Left: 293AAV cells prior to transfection (10X). Top Right: 293AAV cells 48 hours after transfection (10X). Bottom Left: GFP expression in 293AAV cells 48 hours after transfection (10X). Bottom Right: GFP expression in 293AD cells 48 hours after infection (20X).

Recent Product Citations
  1. Ning, L. et al. (2023). Qingre Xingyu recipe exerts inhibiting effects on ulcerative colitis development by inhibiting TNFα/NLRP3/Caspase-1/IL-1β pathway and macrophage M1 polarization. Cell Death Discov. 9(1):84. doi: 10.1038/s41420-023-01361-w.
  2. Overton, L. et al. (2023). Development and Delivery of a Hands-On Short Course in Adeno-Associated Virus Manufacturing to Support Growing Workforce Needs in Gene Therapy. Hum Gene Ther. 34(7-8):259-272. doi: 10.1089/hum.2022.235.
  3. Naguib, S. et al. (2023). Intraocular Sustained Release of EPO-R76E Mitigates Glaucoma Pathogenesis by Activating the NRF2/ARE Pathway. Antioxidants (Basel). 12(3):556. doi: 10.3390/antiox12030556.
  4. Greenwood, M.P. et al. (2023). Osmoadaptive GLP-1R signalling in hypothalamic neurones inhibits antidiuretic hormone synthesis and release. Mol Metab. 70:101692. doi: 10.1016/j.molmet.2023.101692.
  5. Shiroshita, K. et al. (2022). A culture platform to study quiescent hematopoietic stem cells following genome editing. Cell Rep Methods. 2(12):100354. doi: 10.1016/j.crmeth.2022.100354.
  6. Greenwood, M. et al. (2022). Transcription factor Creb3l1 maintains proteostasis in neuroendocrine cells. Mol Metab. doi: 10.1016/j.molmet.2022.101542.
  7. Hörner, M. & Weber, W. (2022). Spatially Defined Gene Delivery into Native Cells with the Red Light-Controlled OptoAAV Technology. Curr Protoc. 2(6):e440. doi: 10.1002/cpz1.440.
  8. Thomas, O.S. et al. (2021). Reversible Shielding and Immobilization of Liposomes and Viral Vectors by Tailored Antibody-Ligand Interactions. Small. doi: 10.1002/smll.202105157.
  9. Hörner, M. et al. (2021). Spatiotemporally confined red light-controlled gene delivery at single-cell resolution using adeno-associated viral vectors. Sci Adv. 7(25):eabf0797. doi: 10.1126/sciadv.abf0797.
  10. Siegrist, C.M. et al. (2020). CRISPR/Cas9 as an antiviral against Orthopoxviruses using an AAV vector. Sci Rep. 10(1):19307. doi: 10.1038/s41598-020-76449-9.
  11. Bougioukli, S. et al. (2020). Limited potential of AAV-mediated gene therapy in transducing human mesenchymal stem cells for bone repair applications. Gene Ther. doi: 10.1038/s41434-020-0182-4.
  12. Gupta, R.V. et al. (2020). In vivo assessment of cell death and nigrostriatal pathway integrity following continuous expression of C3 transferase. Neuroscience. S0306-4522(20)30440-1. doi: 10.1016/j.neuroscience.2020.07.006.
  13. Wang, J. et al. (2019). Brain Endothelial Cells Maintain Lactate Homeostasis and Control Adult Hippocampal Neurogenesis. Cell Stem Cell. 25(6):754-767.e9. doi: 10.1016/j.stem.2019.09.009.
  14. Okada, Y. et al. (2019). Sensory nerve supports epithelial stem cell function in healing of corneal epithelium in mice: the role of trigeminal nerve transient receptor potential vanilloid 4. Lab Invest. 99(2):210-230. doi: 10.1038/s41374-018-0118-4.
  15. Matsui, S. et al. (2018). Neuronal SIRT1 regulates macronutrient-based diet selection through FGF21 and oxytocin signalling in mice. Nat Commun. 9(1):4604. doi: 10.1038/s41467-018-07033-z.
  16. Tseng, S.J. et al. (2018). Targeting Tumor Microenvironment by Bioreduction-Activated Nanoparticles for Light-Triggered Virotherapy. ACS Nano. 12(10):9894-9902. doi: 10.1021/acsnano.8b02813.
  17. Kunisawa, K. et al. (2018). Dysregulation of schizophrenia-related aquaporin 3 through disruption of paranode influences neuronal viability. J Neurochem. 147(3):395-408. doi: 10.1111/jnc.14553.
  18. Friedland, A. E. et al. (2015). Characterization of Staphylococcus aureus Cas9: a smaller Cas9 for all-in-one adeno-associated virus delivery and paired nickase applications. Genome Biol. 16:257.