Catalase Activity Assays

  • Quantify catalase activity in about 60 minutes
  • Suitable for use with plasma, serum, cell lysates or tissue homogenates
  • Catalase standard included for absolute quantitation


Frequently Asked Questions about this product

General FAQs about Oxidative Stress

Email To BuyerPrint this PageCopy Link

Please contact your distributor for pricing.

OxiSelect™ Catalase Activity Assay Kit, Colorimetric
Catalog Number
96 assays
Manual/Data Sheet Download
SDS Download
OxiSelect™ Catalase Activity Assay Kit, Fluorometric
Catalog Number
500 assays
Manual/Data Sheet Download
SDS Download
OxiSelect™ Catalase Activity Assay Kit, Colorimetric, Trial Size
Catalog Number
20 assays
Manual/Data Sheet Download
SDS Download
OxiSelect™ Catalase Activity Assay Kit, Fluorometric, Trial Size
Catalog Number
50 assays
Manual/Data Sheet Download
SDS Download
Product Details

Catalase is a ubiquitous enzyme that destroys hydrogen peroxides formed during oxidative stress. Our OxiSelect™ Catalase Activity Assay Kits measure catalase activity in less than one hour from a variety of samples including blood, cells and tissues.

Direct spectrophotometric detection of catalase activity with ultraviolet light can cause interference from proteins and other biological components. The OxiSelect™ Catalase Activity Assay Kit (Colorimetric) utilizes visible light (520 nm), which reduces sample interference.

The OxiSelect™ Catalase Activity Assay Kit (Fluorometric) provides a 40-fold increase in sensitivity compared to our colorimetric assay.

Standard Curve Generated with the OxiSelect™ Catalase Activity Assay, Fluorometric.

Recent Product Citations
  1. du Plooy, C. S. et al. (2016). The association of endothelin-1 with markers of oxidative stress in a biethnic South African cohort: the SABPA study. Hypertens Res. doi:10.1038/hr.2016.128 (#STA-339).
  2. van Zyl, C. et al. (2016). Antioxidant enzyme activity is associated with blood pressure and carotid intima media thickness in black men and women: The SABPA study. Atherosclerosis. 248:91-96 (#STA-339).
  3. Mels, C. M. et al. (2016). The relationship of nitric oxide synthesis capacity, oxidative stress, and albumin-to-creatinine ratio in black and white men: the SABPA study. AGE. 38:1-11 (#STA-339).
  4. Iqbal, S. et al. (2016). l-Cysteine improves antioxidant enzyme activity, post-thaw quality and fertility of Nili-Ravi buffalo (Bubalus bubalis) bull spermatozoa. Andrologia. doi:10.1111/and.12520 (#STA-339).
  5. Yang, W. et al. (2015).AGE-dependent changes of the antioxidant system in rat livers are accompanied by altered MAPK activation and a decline in motor signaling. EXCLI J. 4:1273-1290 (#STA-339).
  6. Iqbal, S. et al. (2015). Trehalose improves semen antioxidant enzymes activity, post-thaw quality, and fertility in Nili Ravi buffaloes (Bubalus bubalis). Theriogenology doi:10.1016/j.theriogenology.2015.11.004 (#STA-339).
  7. Parra, O. et al. (2016). Biochemical precursor effects on the fatty acid production in cell suspension cultures of Theobroma cacao L. Plant Physiol. Biochem. 111:59-66 (#STA-341).
  8. Helgesen, K. O. et al. (2016). Increased catalase activity—A possible resistance mechanism in hydrogen peroxide resistant salmon lice (Lepeophtheirus salmonis). Aquaculture. doi:10.1016/j.aquaculture.2016.10.012 (#STA-341).
  9. Kurade, M.B. et al. (2016). Insights into microalgae mediated biodegradation of diazinon by Chlorella vulgaris: Microalgal tolerance to xenobiotic pollutants and metabolism. Algal Res. 20:126-134 (#STA-341).
  10. Rababa’h, A. M. et al. (2016). Exposure to waterpipe smoke induces renal functional and oxidative biomarkers variations in mice. Inhal Toxicol. doi:10.1080/08958378.2016.1210703 (#STA-341).
  11. Piemontese, M. et al. (2016). Low bone mass and changes in the osteocyte network in mice lacking autophagy in the osteoblast lineage. Sci Rep. doi:10.1038/srep24262 (#STA-341).
  12. Ahmad, I. M. et al. (2016). Redox status in workers occupationally exposed to long-term low levels of ionizing radiation: A pilot study. Redox Rep. doi:10.1080/13510002.2015.1101891 (#STA-341).
  13. Erbaş, O. et al. (2016). Levetiracetam attenuates rotenone-induced toxicity: A rat model of Parkinson's disease. Environ Toxicol Pharmacol. 42:226-230 (#STA-341).
  14. Harisa, G. I. et al. (2015). Influence of pravastatin chitosan nanoparticles on erythrocytes cholesterol and redox homeostasis: An in vitro study. Arab J Chem. doi:10.1016/j.arabjc.2015.10.016 (#STA-341).
  15. Lee, Y. Y. et al. (2015). Exercise suppresses COX-2 pro-inflammatory pathway in vestibular migraine. Brain Res Bull. 116:98-105 (#STA-341).
  16. Guven, M. et al. (2015). The neuroprotective effect of kefir on spinal cord ischemia/reperfusion injury in rats. J Korean Neurosurg Soc. 57:335-341 (#STA-341).
  17. Cheng, Y. Y. et al. (2015). SIRT1-related inhibition of pro-inflammatory responses and oxidative stress are involved in the mechanism of nonspecific low back pain relief after exercise through modulation of Toll-like receptor 4. J Biochem. doi: 10.1093/jb/mvv041 (#STA-341).
  18. Timmusk, Salme. (2015). Sfp-type PPTase inactivation promotes bacterial biofilm formation and ability to enhance wheat drought tolerance. Front Microbiol.  6:387 (#STA-341).
  19. Yener, A. U. et al. (2015). Effects of kefir on ischemia-reperfusion injury. Eur Rev Med Pharmacol Sci. 19:887-896 (#STA-341).
  20. Torres, F. et al. (2015). Melatonin reduces oxidative stress and improves vascular function in pulmonary hypertensive newborn sheep. J Pineal Res. doi: 10.1111/jpi.12222 (#STA-341).
  21. Plestina-Borjan, I. et al. (2015). Association of age-related macular degeneration with erythrocyte antioxidant enzymes activity and serum total antioxidant status. Oxid Med Cell Longev. 2015:804054 (#STA-341).
  22. Javanbakht, M. H. et al. (2015). Evaluation of antioxidant enzyme activity and antioxidant capacity in patients with newly diagnosed pemphigus vulgaris. Clin Exp Dermatol.  doi: 10.1111/ced.12489 (#STA-341)
  23. Mora, M. et al. (2015). Minocycline increases the activity of superoxide dismutase and reduces the concentration of nitric oxide, hydrogen peroxide and mitochondrial malondialdehyde in manganese treated Drosophila melanogasterNeurochem Res. 39:1270-1278 (#STA-341).
  24. Markiewicz-Górka, I. et al. (2015). Effects of chronic exposure to lead, cadmium, and manganese mixtures on oxidative stress in rat liver and heart. Arch Ind Hyg Toxicol66 (#STA-341).
  25. Saikolappan, S. et al. (2015). Inactivation of the organic hydroperoxide stress resistance regulator OhrR enhances resistance to oxidative stress and isoniazid in Mycobacterium smegmatisJ Bacteriol. 197:51-62 (#STA-341).
  26. Girgih, A. T. et al. (2014). A novel hemp seed meal protein hydrolysate reduces oxidative stress factors in spontaneously hypertensive rats. Nutrients. 6:5652-5666 (#STA-341).
  27. Krzeszowiak, J. et al. (2014). The influence of 9-day trekking in the Alps on the level of oxidative stress parameters and blood parameters in native lowlanders. Ann Agric Environ Med. 21:585-589 (#STA-341).
  28. Kao, C. L. et al. (2014). Vestibular rehabilitation ameliorates chronic dizziness through the SIRT1 axis. Front Aging Neurosci. 6:27 (#STA-341).
  29. Wei, W. et al. (2014). Effect of fluorosis on liver cells of VC deficient and wild type mice. Scientific World Journal. doi:10.1155/2014/287464 (#STA-341).
  30. Palipoch, S. et al. (2014). Hepatoprotective effect of curcumin and alpha-tocopherol against cisplatin-induced oxidative stress. BMC Complement Altern Med. 14:111 (#STA-341).
  31. Palipoch, S. et al. (2014). Amelioration of cisplatin-induced nephrotoxicity in rats by Curcumin and α-Tocopherol. Tropical Journal of Pharmaceutical Research. (#STA-341)
  32. Mikula-Pietrasik, J. et al. (2014).  Resveratrol Derivative, 3,3',4,4'-Tetrahydroxy-trans-Stilbene, Retards Senescence of Mesothelial Cells via Hormetic-Like Prooxidative Mechanism. J Gerontol A Biol Sci Med Sci. 10.1093/gerona/glu172 (#STA-341).
  33. Lee, S.H. et al. (2014).  Effects of In Ovo Injection with Selenium on Immune and Antioxidant Responses During Experimental Necrotic Enteritis in Broiler Chickens. Poult Sci. 93:1113-1121 (#STA-341).
  34. Palipoch, S. et al. (2013). Amelioration of cisplatin-induced nephrotoxicity in rats by curcumin and α-tocopherol. Tropical Journal of Pharmaceutical Research. 12:973-979 (#STA-341).
  35. Costantini, D. et al. (2013). Loss of Integration is Associated with Reduced Resistance to Oxidative Stress. J. Exp. Biol. 216: 2213-2220 (#STA-341).