Catalase Activity Assays

Catalase Activity Assays
  • Quantify catalase activity in about 60 minutes
  • Suitable for use with plasma, serum, cell lysates or tissue homogenates
  • Catalase standard included for absolute quantitation


Frequently Asked Questions about this product

General FAQs about Oxidative Stress

Email To BuyerPrint this PageCopy Link

Please contact your distributor for pricing.

OxiSelect™ Catalase Activity Assay Kit, Colorimetric
Catalog Number
96 assays
Manual/Data Sheet Download
SDS Download
OxiSelect™ Catalase Activity Assay Kit, Fluorometric
Catalog Number
500 assays
Manual/Data Sheet Download
SDS Download
Product Details

Catalase is a ubiquitous enzyme that destroys hydrogen peroxides formed during oxidative stress. Our OxiSelect™ Catalase Activity Assay Kits measure catalase activity in less than one hour from a variety of samples including blood, cells and tissues.

Direct spectrophotometric detection of catalase activity with ultraviolet light can cause interference from proteins and other biological components. The OxiSelect™ Catalase Activity Assay Kit (Colorimetric) utilizes visible light (520 nm), which reduces sample interference.

The OxiSelect™ Catalase Activity Assay Kit (Fluorometric) provides a 40-fold increase in sensitivity compared to our colorimetric assay.

Standard Curve Generated with the OxiSelect™ Catalase Activity Assay, Fluorometric.

Recent Product Citations
  1. El-Boshy, M. et al. (2020). Vitamin D3 and calcium cosupplementation alleviates cadmium hepatotoxicity in the rat: Enhanced antioxidative and anti-inflammatory actions by remodeling cellular calcium pathways. J Biochem Mol Toxicol. doi: 10.1002/jbt.22440 (#STA-341).
  2. Ahmad, I.M. et al. (2019). Oxidative stress in early pregnancy and the risk of preeclampsia. Pregnancy Hypertens. 18:99-102. doi: 10.1016/j.preghy.2019.09.014 (#STA-341).
  3. Karagenç, N. et al. (2019). Transfer of mouse blastocysts exposed to ambient oxygen levels can lead to impaired lung development and redox balance. Molecular Human Reproduction. doi: 10.1093/molehr/gaz052 (#STA-341).
  4. Moore, T.A. et al. (2019). Oxidative Stress Levels Throughout Pregnancy, at Birth, and in the Neonate. Biol Res Nurs. 1099800419858670. doi: 10.1177/1099800419858670 (#STA-341).
  5. Kim, J.H. et al. (2019). Effects on hematological parameters, antioxidant and immune responses, AChE, and stress indicators of olive flounders, Paralichthys olivaceus, raised in bio-floc and seawater challenged by Edwardsiella tarda. Fish Shellfish Immunol. 97:194-203. doi: 10.1016/j.fsi.2019.12.011 (#STA-341).
  6. Pathare, G. (2019). Klotho and catalase expression in essential hypertension. J Cardiol Curr Res. 12(3):46‒51. doi: 10.15406/jccr.2019.12.00437 (#STA-341).
  7. Gonzaléz-Candia, A. et al. (2019). Melatonin long lasting beneficial effects on pulmonary vascular reactivity and redox balance in chronic hypoxic ovine neonates. J Pineal Res. doi: 10.1111/jpi.12613 (#STA-341).
  8. Wang, S. et al. (2019). Effect of supplementation of pelleted hazel (Corylus avellana) leaves on blood antioxidant activity, cellular immune response and heart beat parameters in sheep. Journal of Animal Science. doi:10.1093/jas/skz288 (#STA-341).
  9. Figueroa, E. et al. (2019). Effects of cryopreservation on mitochondrial function and sperm quality in fish. Aquaculture. doi:10.1016/j.aquaculture.2019.06.004 (#STA-341).
  10. Li, N. et al. (2019). Bilberry anthocyanin improve the serum cholesterol profile in aging perimenopausal rats via the estrogen receptor signaling pathway. Food & Function. doi:10.1039/c9fo00639g (#STA-341).
  11. Karthivashan, G. et al. (2019). Cognitive-enhancing and ameliorative effects of acanthoside B in a scopolamine-induced amnesic mouse model through regulation of oxidative/inflammatory/cholinergic systems and activation of the TrkB/CREB/BDNF pathway. Food Chem Toxicol. pii: S0278-6915(19)30261-3. doi: 10.1016/j.fct.2019.04.062 (#STA-341).
  12. Zhelev, Z. et al. (2019). "Redox Imaging” to Distinguish Cells with Different Proliferative Indexes: Superoxide, Hydroperoxides, and Their Ratio as Potential Biomarkers. Oxidative Medicine and Cellular Longevity. 2019: 1-18. doi:10.1155/2019/6373685 (#STA-341).
  13. Lee, S. Y. et al. (2019). Neuroprotective effects of different molecular weight peptide fractions obtained from beef by hydrolysis with commercial enzymes in SH-SY5Y cells. Food Research International. doi:10.1016/j.foodres.2019.03.039 (#STA-341).
  14. Gonzalez-Candia, A. et al. (2019). Antenatal melatonin modulates an enhanced antioxidant/pro-oxidant ratio in pulmonary hypertensive newborn sheep. Redox Biol. 22:101128. doi: 10.1016/j.redox.2019.101128 (#STA-341).
  15. Chen, K.H. et al. (2019). Elevation of serum oxidative stress in patients with retina vein occlusions. Acta Ophthalmol. 97(2):e290-e295. doi: 10.1111/aos.13892 (#STA-341).
  16. Iqbal, S. et al. (2019). Antioxidant Enzymes Profile During Cryopreservation of Nili Ravi Buffalo Bull Spermatozoa (Bubalus Bubalis). The J. Anim. Plant Sci. 29(6):2019 (#STA-339).
  17. Khabour, O.F. et al. (2018). The effect of chronic exposure to waterpipe tobacco smoke on airway inflammation in mice. Life Sci. 200:110-114. doi: 10.1016/j.lfs.2018.03.034 (#STA-341).
  18. Sehitoglu, M.H. et al. (2018). The hepatoprotective effect of Aloe vera on ischemia-reperfusion injury in rats. North Clin Istanb. doi: 10.14744/nci.2018.82957 (#STA-341).
  19. Pool, H. et al. (2018). Development of genistein-PEGylated silica hybrid nanomaterials with enhanced antioxidant and antiproliferative properties on HT29 human colon cancer cells. Am J Transl Res. 10(8):2306-2323 (#STA-341).
  20. Lee, H.W. et al. (2018). Cyanobacteria-specific algicidal mechanism of bioinspired naphthoquinone derivative, NQ 2-0. Sci Rep. 8(1):11595. doi: 10.1038/s41598-018-29976-5 (#STA-341).
  21. Mascarenhas, S. et al. (2018). Silica - A trace geogenic element with emerging nephrotoxic potential. Sci Total Environ. 645:297-317. doi: 10.1016/j.scitotenv.2018.07.075 (#STA-341).
  22. Alberdi, E. et al. (2018). Mangiferin and Morin Attenuate Oxidative Stress, Mitochondrial Dysfunction, and Neurocytotoxicity, Induced by Amyloid Beta Oligomers. Oxid Med Cell Longev. 2018:2856063. doi: 10.1155/2018/2856063 (#STA-341).
  23. Albalawi, A. et al. (2018). Carnosic acid attenuates acrylamide-induced retinal toxicity in zebrafish embryos. Exp Eye Res. 175:103-114. doi: 10.1016/j.exer.2018.06.018 (#STA-341).
  24. Aspera-Werz, R.H. et al. (2018). Nicotine and Cotinine Inhibit Catalase and Glutathione Reductase Activity Contributing to the Impaired Osteogenesis of SCP-1 Cells Exposed to Cigarette Smoke. Oxid Med Cell Longev. 2018:3172480. doi: 10.1155/2018/3172480 (#STA-339).
  25. du Plooy, C. S. et al. (2016). The association of endothelin-1 with markers of oxidative stress in a biethnic South African cohort: the SABPA study. Hypertens Res. doi:10.1038/hr.2016.128 (#STA-339).
  26. van Zyl, C. et al. (2016). Antioxidant enzyme activity is associated with blood pressure and carotid intima media thickness in black men and women: The SABPA study. Atherosclerosis. 248:91-96 (#STA-339).
  27. Mels, C. M. et al. (2016). The relationship of nitric oxide synthesis capacity, oxidative stress, and albumin-to-creatinine ratio in black and white men: the SABPA study. AGE. 38:1-11 (#STA-339).
  28. Iqbal, S. et al. (2016). l-Cysteine improves antioxidant enzyme activity, post-thaw quality and fertility of Nili-Ravi buffalo (Bubalus bubalis) bull spermatozoa. Andrologia. doi:10.1111/and.12520 (#STA-339).
  29. Yang, W. et al. (2015).AGE-dependent changes of the antioxidant system in rat livers are accompanied by altered MAPK activation and a decline in motor signaling. EXCLI J. 4:1273-1290 (#STA-339).
  30. Iqbal, S. et al. (2015). Trehalose improves semen antioxidant enzymes activity, post-thaw quality, and fertility in Nili Ravi buffaloes (Bubalus bubalis). Theriogenology doi:10.1016/j.theriogenology.2015.11.004 (#STA-339).