Catalase Activity Assays

Catalase Activity Assays
  • Quantify catalase activity in about 60 minutes
  • Suitable for use with plasma, serum, cell lysates or tissue homogenates
  • Catalase standard included for absolute quantitation

 

Frequently Asked Questions about this product

General FAQs about Oxidative Stress

Email To BuyerPrint this PageCopy Link
Ordering

Please contact your distributor for pricing.

OxiSelect™ Catalase Activity Assay Kit, Colorimetric
Catalog Number
STA-341
Size
96 assays
Detection
Colorimetric
Manual/Data Sheet Download
SDS Download
Price
$555.00
OxiSelect™ Catalase Activity Assay Kit, Fluorometric
Catalog Number
STA-339
Size
500 assays
Detection
Fluorometric
Manual/Data Sheet Download
SDS Download
Price
$625.00
Product Details

Catalase is a ubiquitous enzyme that destroys hydrogen peroxides formed during oxidative stress. Our OxiSelect™ Catalase Activity Assay Kits measure catalase activity in less than one hour from a variety of samples including blood, cells and tissues.

Direct spectrophotometric detection of catalase activity with ultraviolet light can cause interference from proteins and other biological components. The OxiSelect™ Catalase Activity Assay Kit (Colorimetric) utilizes visible light (520 nm), which reduces sample interference.

The OxiSelect™ Catalase Activity Assay Kit (Fluorometric) provides a 40-fold increase in sensitivity compared to our colorimetric assay.

Standard Curve Generated with the OxiSelect™ Catalase Activity Assay, Fluorometric.

Recent Product Citations
  1. El-Boshy, M. et al. (2020). Vitamin D3 and calcium cosupplementation alleviates cadmium hepatotoxicity in the rat: Enhanced antioxidative and anti-inflammatory actions by remodeling cellular calcium pathways. J Biochem Mol Toxicol. doi: 10.1002/jbt.22440 (#STA-341).
  2. Ahmad, I.M. et al. (2019). Oxidative stress in early pregnancy and the risk of preeclampsia. Pregnancy Hypertens. 18:99-102. doi: 10.1016/j.preghy.2019.09.014 (#STA-341).
  3. Karagenç, N. et al. (2019). Transfer of mouse blastocysts exposed to ambient oxygen levels can lead to impaired lung development and redox balance. Molecular Human Reproduction. doi: 10.1093/molehr/gaz052 (#STA-341).
  4. Moore, T.A. et al. (2019). Oxidative Stress Levels Throughout Pregnancy, at Birth, and in the Neonate. Biol Res Nurs. 1099800419858670. doi: 10.1177/1099800419858670 (#STA-341).
  5. Kim, J.H. et al. (2019). Effects on hematological parameters, antioxidant and immune responses, AChE, and stress indicators of olive flounders, Paralichthys olivaceus, raised in bio-floc and seawater challenged by Edwardsiella tarda. Fish Shellfish Immunol. 97:194-203. doi: 10.1016/j.fsi.2019.12.011 (#STA-341).
  6. Pathare, G. (2019). Klotho and catalase expression in essential hypertension. J Cardiol Curr Res. 12(3):46‒51. doi: 10.15406/jccr.2019.12.00437 (#STA-341).
  7. Gonzaléz-Candia, A. et al. (2019). Melatonin long lasting beneficial effects on pulmonary vascular reactivity and redox balance in chronic hypoxic ovine neonates. J Pineal Res. doi: 10.1111/jpi.12613 (#STA-341).
  8. Wang, S. et al. (2019). Effect of supplementation of pelleted hazel (Corylus avellana) leaves on blood antioxidant activity, cellular immune response and heart beat parameters in sheep. Journal of Animal Science. doi:10.1093/jas/skz288 (#STA-341).
  9. Figueroa, E. et al. (2019). Effects of cryopreservation on mitochondrial function and sperm quality in fish. Aquaculture. doi:10.1016/j.aquaculture.2019.06.004 (#STA-341).
  10. Li, N. et al. (2019). Bilberry anthocyanin improve the serum cholesterol profile in aging perimenopausal rats via the estrogen receptor signaling pathway. Food & Function. doi:10.1039/c9fo00639g (#STA-341).
  11. Karthivashan, G. et al. (2019). Cognitive-enhancing and ameliorative effects of acanthoside B in a scopolamine-induced amnesic mouse model through regulation of oxidative/inflammatory/cholinergic systems and activation of the TrkB/CREB/BDNF pathway. Food Chem Toxicol. pii: S0278-6915(19)30261-3. doi: 10.1016/j.fct.2019.04.062 (#STA-341).
  12. Zhelev, Z. et al. (2019). "Redox Imaging” to Distinguish Cells with Different Proliferative Indexes: Superoxide, Hydroperoxides, and Their Ratio as Potential Biomarkers. Oxidative Medicine and Cellular Longevity. 2019: 1-18. doi:10.1155/2019/6373685 (#STA-341).
  13. Lee, S. Y. et al. (2019). Neuroprotective effects of different molecular weight peptide fractions obtained from beef by hydrolysis with commercial enzymes in SH-SY5Y cells. Food Research International. doi:10.1016/j.foodres.2019.03.039 (#STA-341).
  14. Gonzalez-Candia, A. et al. (2019). Antenatal melatonin modulates an enhanced antioxidant/pro-oxidant ratio in pulmonary hypertensive newborn sheep. Redox Biol. 22:101128. doi: 10.1016/j.redox.2019.101128 (#STA-341).
  15. Chen, K.H. et al. (2019). Elevation of serum oxidative stress in patients with retina vein occlusions. Acta Ophthalmol. 97(2):e290-e295. doi: 10.1111/aos.13892 (#STA-341).
  16. Iqbal, S. et al. (2019). Antioxidant Enzymes Profile During Cryopreservation of Nili Ravi Buffalo Bull Spermatozoa (Bubalus Bubalis). The J. Anim. Plant Sci. 29(6):2019 (#STA-339).
  17. Khabour, O.F. et al. (2018). The effect of chronic exposure to waterpipe tobacco smoke on airway inflammation in mice. Life Sci. 200:110-114. doi: 10.1016/j.lfs.2018.03.034 (#STA-341).
  18. Sehitoglu, M.H. et al. (2018). The hepatoprotective effect of Aloe vera on ischemia-reperfusion injury in rats. North Clin Istanb. doi: 10.14744/nci.2018.82957 (#STA-341).
  19. Pool, H. et al. (2018). Development of genistein-PEGylated silica hybrid nanomaterials with enhanced antioxidant and antiproliferative properties on HT29 human colon cancer cells. Am J Transl Res. 10(8):2306-2323 (#STA-341).
  20. Lee, H.W. et al. (2018). Cyanobacteria-specific algicidal mechanism of bioinspired naphthoquinone derivative, NQ 2-0. Sci Rep. 8(1):11595. doi: 10.1038/s41598-018-29976-5 (#STA-341).
  21. Mascarenhas, S. et al. (2018). Silica - A trace geogenic element with emerging nephrotoxic potential. Sci Total Environ. 645:297-317. doi: 10.1016/j.scitotenv.2018.07.075 (#STA-341).
  22. Alberdi, E. et al. (2018). Mangiferin and Morin Attenuate Oxidative Stress, Mitochondrial Dysfunction, and Neurocytotoxicity, Induced by Amyloid Beta Oligomers. Oxid Med Cell Longev. 2018:2856063. doi: 10.1155/2018/2856063 (#STA-341).
  23. Albalawi, A. et al. (2018). Carnosic acid attenuates acrylamide-induced retinal toxicity in zebrafish embryos. Exp Eye Res. 175:103-114. doi: 10.1016/j.exer.2018.06.018 (#STA-341).
  24. Aspera-Werz, R.H. et al. (2018). Nicotine and Cotinine Inhibit Catalase and Glutathione Reductase Activity Contributing to the Impaired Osteogenesis of SCP-1 Cells Exposed to Cigarette Smoke. Oxid Med Cell Longev. 2018:3172480. doi: 10.1155/2018/3172480 (#STA-339).
  25. du Plooy, C. S. et al. (2016). The association of endothelin-1 with markers of oxidative stress in a biethnic South African cohort: the SABPA study. Hypertens Res. doi:10.1038/hr.2016.128 (#STA-339).
  26. van Zyl, C. et al. (2016). Antioxidant enzyme activity is associated with blood pressure and carotid intima media thickness in black men and women: The SABPA study. Atherosclerosis. 248:91-96 (#STA-339).
  27. Mels, C. M. et al. (2016). The relationship of nitric oxide synthesis capacity, oxidative stress, and albumin-to-creatinine ratio in black and white men: the SABPA study. AGE. 38:1-11 (#STA-339).
  28. Iqbal, S. et al. (2016). l-Cysteine improves antioxidant enzyme activity, post-thaw quality and fertility of Nili-Ravi buffalo (Bubalus bubalis) bull spermatozoa. Andrologia. doi:10.1111/and.12520 (#STA-339).
  29. Yang, W. et al. (2015).AGE-dependent changes of the antioxidant system in rat livers are accompanied by altered MAPK activation and a decline in motor signaling. EXCLI J. 4:1273-1290 (#STA-339).
  30. Iqbal, S. et al. (2015). Trehalose improves semen antioxidant enzymes activity, post-thaw quality, and fertility in Nili Ravi buffaloes (Bubalus bubalis). Theriogenology doi:10.1016/j.theriogenology.2015.11.004 (#STA-339).