Glutathione Reductase Assay

Glutathione Reductase Assay
  • Detection sensitivity limit of approximately 0.6 mU/mL
  • Sufficient reagents to perform up to 100 assays, including standard curve and unknown samples
Email To BuyerPrint this PageCopy Link

Please contact your distributor for pricing.

OxiSelect™ Glutathione Reductase Assay Kit
Catalog Number
100 assays
Manual/Data Sheet Download
SDS Download
Product Details

Cell Biolabs’ OxiSelect™ Glutathione Reductase Assay Kit is a quantitative assay for measuring glutathione reductase activity within plasma, erythrocytes, tissues, and cell lysates. Glutathione reductase activity is defined as 1 unit of enzyme reducing 1 µmole oxidized glutathione (GSSG) per minute at pH 7.6 and 25ºC.  The kit employs a simple enzymatic recycling reaction for glutathione quantification where the reduction of a chromagen is correlated to glutathione reductase enzymatic activity.

Recent Product Citations
  1. Kato, T. et al. (2023). Involvement of a flavoprotein, acetohydroxyacid synthase, in growth and riboflavin production in riboflavin-overproducing Ashbya gossypii mutant. Microb Cell Fact. 22(1):105. doi: 10.1186/s12934-023-02114-1.
  2. Bokhary, T. et al. (2022). Salvadora persica extract attenuates cyclophosphamide-induced hepatorenal damage by modulating oxidative stress, inflammation, and apoptosis in rats. J Integr Med. doi: 10.1016/j.joim.2022.05.001.
  3. Ishida, T. et al. (2021). Targeted therapy for drug-tolerant persister cells after imatinib treatment for gastrointestinal stromal tumours. Br J Cancer. doi: 10.1038/s41416-021-01566-9.
  4. Nour, M.A. et al. (2021). Productive performance, fertility and hatchability, blood indices and gut microbial load in laying quails as affected by two types of probiotic bacteria. Saudi J Biol Sci. doi: 10.1016/j.sjbs.2021.07.030.
  5. de Los Santos-Jiménez, J. et al. (2021). Glutaminase isoforms expression switches microRNA levels and oxidative status in glioblastoma cells. J Biomed Sci. 28(1):14. doi: 10.1186/s12929-021-00712-y.
  6. Ogawa, K. et al. (2020). Forced expression of miR-143 and -145 in cardiomyocytes induces cardiomyopathy with a reductive redox shift. Cell Mol Biol Lett. 25:40. doi: 10.1186/s11658-020-00232-x.
  7. Fahd S. Alsayed, M. et al. (2020). Biological control of yeast contamination of industrial foods by propolis. Saudi J Biol Sci. doi: 10.1016/j.sjbs.2020.01.023.
  8. Choi, J.S. et al. (2019). Evaluation of microplastic toxicity in accordance with different sizes and exposure times in the marine copepod Tigriopus japonicus. Mar Environ Res. doi: 10.1016/j.marenvres.2019.104838.
  9. Wang, S. et al. (2019). Effect of supplementation of pelleted hazel (Corylus avellana) leaves on blood antioxidant activity, cellular immune response and heart beat parameters in sheep. Journal of Animal Science. doi: 10.1093/jas/skz288.
  10. Abd El-Moneim, A.E. et al. (2019). Beneficial effect of feeding olive pulp and Aspergillus awamori on productive performance, egg quality, serum/yolk cholesterol and oxidative status in laying Japanese quails. J. Anim. Feed Sci. 28(1):52–61. doi: 10.22358/jafs/105537/2019. 
  11. Alshabibi, M.A. et al. (2018). Human decidua basalis mesenchymal stem/stromal cells protect endothelial cell functions from oxidative stress induced by hydrogen peroxide and monocytes. Stem Cell Res Ther. 9(1):275. doi: 10.1186/s13287-018-1021-z.
  12. Abumaree, M.H. et al. (2017). Human chorionic villous mesenchymal stem/stromal cells modify the effects of oxidative stress on endothelial cell functions. Placenta. doi: 10.1016/j.placenta.2017.05.001.
  13. Kim, M.H. et al. (2016). Antioxidant and hepatoprotective effects of fermented red ginseng against high fat diet-induced hyperlipidemia in rats. Lab Anim Res. doi: 10.5625/lar.2016.32.4.217.
  14. Arrabal, S. et al. (2015). Pharmacological blockade of cannabinoid CB1 receptors in diet-induced obesity regulates mitochondrial dihydrolipoamide dehydrogenase in muscle. PLoS One. 10:e0145244.