Hydroxyl Radical Antioxidant Capacity (HORAC) Assay

Hydroxyl Radical Antioxidant Capacity (HORAC) Assay
  • Obtain results in less than 2 hours
  • Suitable for use with plasma, cell fractions, tissue lysates, solid and aqueous nutrition samples
  • Antioxidant standard included

 

Frequently Asked Questions about this product

General FAQs about Oxidative Stress

Email To BuyerPrint this PageCopy Link
Ordering

Please contact your distributor for pricing.

OxiSelect™ HORAC Activity Assay Kit
Catalog Number
STA-346
Size
192 assays
Detection
Fluorometric
Manual/Data Sheet Download
SDS Download
Price
$475.00
OxiSelect™ HORAC Activity Assay Kit
Catalog Number
STA-346-5
Size
5 x 192 assays
Detection
Fluorometric
Manual/Data Sheet Download
SDS Download
Price
$2,015.00
OxiSelect™ HORAC Activity Assay Kit, Trial Size
Catalog Number
STA-346-T
Size
48 assays
Detection
Fluorometric
Manual/Data Sheet Download
SDS Download
Price
$240.00
Product Details

The HORAC assay is a powerful tool to measure the antioxidant capacity of biomolecules. Our OxiSelect™ HORAC Activity Assay measures the degradation of free hydroxyl radicals in less than 2 hours from a wide variety of sample types.

Assay Principle for the OxiSelect™ HORAC Activity Assay. Please see product manual for detailed calculations.

Recent Product Citations
  1. Zhang, X. et al. (2021). Antioxidant and C5a-blocking strategy for hepatic ischemia-reperfusion injury repair. J Nanobiotechnology. 19(1):107. doi: 10.1186/s12951-021-00858-9.
  2. Zhang, D.Y. et al. (2020). Ultrasmall Platinum Nanozymes as Broad-Spectrum Antioxidants for Theranostic Application in Acute Kidney Injury. Chem. Eng. J. doi: 10.1016/j.cej.2020.127371.
  3. Wake, H. et al. (2020). Histidine-rich glycoprotein possesses anti-oxidant activity through self-oxidation and inhibition of hydroxyl radical production via chelating divalent metal ions in Fenton's reaction. Free Radic Res. doi: 10.1080/10715762.2020.1825703.
  4. Rosenkrans, Z.T. et al. (2020). Selenium‐Doped Carbon Quantum Dots Act as Broad‐Spectrum Antioxidants for Acute Kidney Injury Management. Adv. Sci. doi: 10.1002/advs.202000420.
  5. Pham, T.N.M. et al. (2020). Protective Mechanisms of Avocado Oil Extract Against Ototoxicity. Nutrients. 12(4). pii: E947. doi: 10.3390/nu12040947.
  6. Ansar, M. et al. (2020). Increased Lung Catalase Activity Confers Protection Against Experimental RSV Infection. Sci Rep. 10(1):3653. doi: 10.1038/s41598-020-60443-2.
  7. Xin, H. et al. (2019).  Attenuated glutamate induced ROS production by antioxidative compounds in neural cell lines. RSC Adv. 9:34735–34743. doi: 10.1039/c9ra03848e.
  8. Li, S. et al. (2019). Intrathecal Administration of Nanoclusters for Protecting Neurons against Oxidative Stress in Cerebral Ischemia/Reperfusion Injury. ACS Nano. doi: 10.1021/acsnano.9b06780.
  9. Choi, B. et al. (2019). Highly selective microglial uptake of ceria-zirconia nanoparticles for enhanced analgesic treatment of neuropathic pain. Nanoscale. doi: 10.1039/c9nr02648g.
  10. Gardner, A.W. et al. (2019). Vascular Inflammation, Calf Muscle Oxygen Saturation, and Blood Glucose are Associated With Exercise Pressor Response in Symptomatic Peripheral Artery Disease. Angiology. 3319719838399. doi: 10.1177/0003319719838399.
  11. Gardner, A.W. et al. (2019). Changes in vascular and inflammatory biomarkers after exercise rehabilitation in patients with symptomatic peripheral artery disease. J Vasc Surg. pii: S0741-5214(19)30222-8. doi: 10.1016/j.jvs.2018.12.056.
  12. Jiang, D. et al. (2018). DNA origami nanostructures can exhibit preferential renal uptake and alleviate acute kidney injury. Nat Biomed Eng. 2(11):865-877. doi: 10.1038/s41551-018-0317-8.
  13. Ni, D. et al. (2018). Molybdenum-based nanoclusters act as antioxidants and ameliorate acute kidney injury in mice. Nat Commun. 9(1):5421. doi: 10.1038/s41467-018-07890-8.
  14. Ortecho-Zuta, U. et al. (2018). Effects of Enzymatic Activation of Bleaching Gels on Hydrogen Peroxide Degradation Rates, Bleaching Effectiveness, and Cytotoxicity. Oper Dent. doi: 10.2341/17-276-L.
  15. Gregory Rivera, M. et al. (2018). Peptide Inhibitor of Complement C1 (PIC1) demonstrates antioxidant activity via single electron transport (SET) and hydrogen atom transfer (HAT). PLoS One. 13(3):e0193931. doi: 10.1371/journal.pone.0193931.
  16. Molinari, R. et al. (2018). Tartary buckwheat malt as ingredient of gluten-free cookies. Journal of Cereal Science. 80:37-43. doi: 10.1016/j.jcs.2017.11.011.
  17. Oraby, H.F. et al. (2017). Changes in the concentration of avenanthramides in response to salinity stress in CBF 3 transgenic oat. J. Cereal Sci. doi: 10.1016/j.jcs.2017.06.010.
  18. Gardner, A.W. et al. (2017). Association between daily walking and antioxidant capacity in patients with symptomatic peripheral artery disease. J Vasc Surg. pii: S0741-5214(17)30098-8. doi: 10.1016/j.jvs.2016.12.108.
  19. Gardner, A. W. et al. (2016). Association between gait characteristics and endothelial oxidative stress and inflammation in patients with symptomatic peripheral artery disease. AGE (Dordr). doi:10.1007/s11357-016-9925-y.
  20. Jeong, M. H. et al. (2014). In vitro evaluation of Cordyceps militaris as a potential radioprotective agent. Int J Mol Med. 34:1349-1357.
  21. Mishra, S. et al. (2014). Semiquinone glucoside derivative (SQGD) isolated from Bacillus sp. INM-1 protects against gamma radiation-induced oxidative stress. Environ Toxicol Pharmacol.  37:553-562.
  22. Gardner, A. W. et al. (2014). Gender and racial differences in endothelial oxidative stress and inflammation in patients with symptomatic peripheral artery disease. J Vasc Surg. 61:1249-1257.
  23. Gardner, A. W. et al. (2014). Greater endothelial apoptosis and oxidative stress in patients with peripheral artery disease. Int J Vasc Med. doi:10.1155/2014/160534.
  24. Gardner, A. W. et al. (2014).  Impaired Vascular Endothelial Growth Factor A and Inflammation in Patients with Peripheral Artery Disease. Angiology. 65:683-690.
  25. Jeong, M.H. et al. (2014).  Protective Activity of a Novel Resveratrol Analogue, HS-1793, Against DNA Damage in 137Cs-Irradiated CHO-K1 Cells.  J Radiat Res. 55:464-475.
  26. J, M.H. et al. (2014). Protective Activity of a Novel Resveratrol Analogue, HS-1793, Against DNA Damage in 137Cs-Irradiated CHO-K1 Cells. J Radiat Res. 10.1093/hmg/ddt662.
  27. Gardner, A. et al. (2013). Impaired Vascular Endothelial Growth Factor A and Inflammation in Patients With Peripheral Artery Disease. Angiology. 10.1177/0003319713501376.
  28. Bailey-Downs. et al. (2013). Aging Exacerbates Obesity-Induced Oxidative Stress and Inflammation in Perivascular Adipose Tissue in Mice: A Paracrine Mechanism Contributing to Vascular Redox Dysregulation and Inflammation. J Gerontol A Biol Sci Med Sci. 68:780-792.
  29. Ungvari, Z. et al. (2013). Testing Predictions of the Oxidative Stress Hypothesis of Aging Using a Novel Invertebrate Model of Longevity: The Giant Clam (Tridacna Derasa). J Gerontol A Biol Sci Med Sci. 68:359-367.
  30. Downs, L.C. et al. (2012). Aging Exacerbates Obesity-Induced Oxidative Stress and Inflammation in Perivascular Adipose Tissue in Mice: A Paracrine Mechanism Contributing to Vascular Redox Dysregulation and Inflammation. J Gerontol A Biol Sci Med Sci. 10.1093/gerona/ gls238.