In Vitro ROS/RNS Assay

In Vitro ROS/RNS Assay
  • Measures total reactive oxygen species and reactive nitrogen species, including hydrogen peroxide, nitric oxide, peroxyl radical, and peroxynitrite anion
  • Suitable for use with serum, plasma, urine, cell lysates or cell culture supernatants
  • Detection sensitivity limit of 10 pM for DCF and 40 nM for hydrogen peroxide

 

Frequently Asked Questions about this product

General FAQs about Oxidative Stress

Email To BuyerPrint this PageCopy Link
Ordering

Please contact your distributor for pricing.

OxiSelect™ In Vitro ROS/RNS Assay Kit (Green Fluorescence)
Catalog Number
STA-347
Size
96 assays
Detection
Fluorometric
Manual/Data Sheet Download
SDS Download
Price
$505.00
OxiSelect™ In Vitro ROS/RNS Assay Kit (Green Fluorescence)
Catalog Number
STA-347-5
Size
5 x 96 assays
Detection
Fluorometric
Manual/Data Sheet Download
SDS Download
Price
$2,150.00
OxiSelect™ In Vitro ROS/RNS Assay Kit (Green Fluorescence), Trial Size
Catalog Number
STA-347-T
Size
20 assays
Detection
Fluorometric
Manual/Data Sheet Download
SDS Download
Price
$255.00
Product Details

The OxiSelect™ In Vitro ROS/RNS Assay provides a sensitive method to detect total reactive oxygen species (ROS) plus reactive nitrogen species (RNS) in a wide variety of sample types. This assay employs a proprietary fluorogenic probe, DCFH-DiOxyQ; the probe is primed with a dequenching reagent to the highly reactive DCFH form. In the presence of ROS and RNS, the DCFH is rapidly oxidized to the highly fluorescent DCF.

Assay Principle.

Hydrogen Peroxide Standard Curve.

Detection of Various Free Radical Species. DCF fluorescence curves for AAPH (peroxyl radical generator), SIN-1 (peroxynitrite generator), and SNP (nitric oxide generator).

Recent Product Citations
  1. Aljaser, F. et al. (2021). Effect of trace elements on the seminal oxidative status and correlation to sperm motility in infertile Saudi males. Saudi J Biol Sci. doi: 10.1016/j.sjbs.2021.04.042.
  2. ALTamimi, J.Z. et al. (2021). Ellagic acid improved diabetes mellitus-induced testicular damage and sperm abnormalities by activation of Nrf2. Saudi J Biol Sci. doi: 10.1016/j.sjbs.2021.04.005.
  3. Kim, D.H. et al. (2021). Comparison of therapeutic effects between topical 8-oxo-2'-deoxyguanosine and corticosteroid in ocular alkali burn model. Sci Rep. 11(1):6909. doi: 10.1038/s41598-021-86440-7.
  4. Shao, A. et al. (2021). Melatonin Ameliorates Hemorrhagic Transformation via Suppression of ROS-Induced NLRP3 Activation after Cerebral Ischemia in Hyperglycemic Rats. Oxid Med Cell Longev. 2021:6659282. doi: 10.1155/2021/6659282.
  5. ALTamimia, J.Z. et al. (2021). Ellagic acid protects against diabetic nephropathy in rats by regulating the transcription and activity of Nrf2. J Funct Foods. doi: 10.1016/j.jff.2021.104397.
  6. Cuervo, W. et al. (2021). Oxidative Stress Compromises Lymphocyte Function in Neonatal Dairy Calves. Antioxidants (Basel). 10(2):255. doi: 10.3390/antiox10020255.
  7. BinMowyna, M.N. et al. (2021). Kaempferol suppresses acetaminophen-induced liver damage by upregulation/activation of SIRT1. Pharm Biol. 59(1):146-156. doi: 10.1080/13880209.2021.1877734.
  8. Lee, S.H. (2021). Human Adipose-Derived Stem Cells' Paracrine Factors in Conditioned Medium Can Enhance Porcine Oocyte Maturation and Subsequent Embryo Development. Int J Mol Sci. 22(2):E579. doi: 10.3390/ijms22020579.
  9. Grau, M. et al. (2021). Sub-Fractions of Red Blood Cells Respond Differently to Shear Exposure Following Superoxide Treatment. Biology (Basel). 10(1):E47. doi: 10.3390/biology10010047.
  10. Nakanishi, K. et al. (2021).  High-Dose Vitamin C Administration Inhibits the Invasion and Proliferation of Melanoma Cells in Mice Ovary. Biol Pharm Bull. 44(1):75-81. doi: 10.1248/bpb.b20-00637.
  11. Wang, H. et al. (2020). Comprehensive Subchronic Inhalation Toxicity Assessment of an Indoor School Air Mixture of PCBs. Environ Sci Technol. doi: 10.1021/acs.est.0c04470.
  12. Katerji, M. et al. (2020). Oxidative stress markers in patient-derived non-cancerous cervical tissues and cells. Sci Rep. 10(1):19044. doi: 10.1038/s41598-020-76159-2.
  13. Chan, K.C. et al. (2020). Effects of fermented red bean extract on nephropathy in streptozocin-induced diabetic rats. Food Nutr Res. doi: 10.29219/fnr.v64.4272.
  14. Yeh, W.J. et al. (2020). Hylocereus polyrhizus Peel Extract Retards Alcoholic Liver Disease Progression by Modulating Oxidative Stress and Inflammatory Responses in C57BL/6 Mice. Nutrients. 12(12):3884. doi: 10.3390/nu12123884.
  15. Xu, Y. et al. (2020). Hepatocyte-specific Expression of Human Carboxylesterase 2 Attenuates Non-alcoholic Steatohepatitis in Mice. Am J Physiol Gastrointest Liver Physiol. doi: 10.1152/ajpgi.00315.2020.
  16. Warowicka, A. et al. (2020). Alternations in mitochondrial genome in carcinogenesis of HPV positive cervix. Exp Mol Pathol. doi: 10.1016/j.yexmp.2020.104530.
  17. Tonogawa, U. et al. (2020). Abnormal increases in reactive oxygen species in dying insects infected with nematodes. Arch Insect Biochem Physiol. doi: 10.1002/arch.21758.
  18. Katerji, M. et al. (2020).  Oxidative stress markers in patient-derived non-cancerous cervical tissues and cells. Sci Rep. 10(1):19044. doi: 10.1038/s41598-020-76159-2.
  19. Olejnik, A. et al. (2020). Ameliorating Effect of Klotho Protein on Rat Heart during I/R Injury. Oxid Med Cell Longev. doi: 10.1155/2020/6427284.
  20. García-Laorden, M.I. et al. (Systemic Effects Induced by Hyperoxia in a Preclinical Model of Intra-abdominal Sepsis. Mediators Inflamm. doi: 10.1155/2020/5101834.
  21. Itam, M. et al. (2020). Metabolic and physiological responses to progressive drought stress in bread wheat. Sci Rep. doi: 10.1038/s41598-020-74303-6.
  22. Siregar, A.S. et al. (2020). Dipeptide YA is Responsible for the Positive Effect of Oyster Hydrolysates on Alcohol Metabolism in Single Ethanol Binge Rodent Models. Mar. Drugs. 18(10):512. doi: 10.3390/md18100512.
  23. Handa, K. et al. (2020). Bone loss caused by dopaminergic degeneration and levodopa treatment in Parkinson's disease model mice. Sci Rep. 9(1):13768. doi: 10.1038/s41598-019-50336-4.
  24. Opgenorth, J. et al. (2020). Colostrum supplementation with n-3 fatty acids alters plasma polyunsaturated fatty acids and inflammatory mediators in newborn calves. J Dairy Sci. doi: 10.3168/jds.2019-18045.
  25. Barroso, E. et al. (2020). SIRT3 deficiency exacerbates fatty liver by attenuating the HIF1α-LIPIN 1 pathway and increasing CD36 through Nrf2. Cell Commun Signal. 18(1):147. doi: 10.1186/s12964-020-00640-8.
  26. Seon, G. et al. (2020). Effect of post-treatment process of microalgal hydrolysate on bioethanol production. Sci Rep. 10(1):16698. doi: 10.1038/s41598-020-73816-4.
  27. ALTamimi, J.Z. et al. (2020). Curcumin reverses diabetic nephropathy in streptozotocin-induced diabetes in rats by inhibition of PKCβ/p66Shc axis and activation of FOXO-3a. J Nutr Biochem. doi: 10.1016/j.jnutbio.2020.108515.
  28. Hiramoto, K. et al. (2020). Innate immune activation and antitumor effects of Lactobacillus-fermented Sparassis crispa extract in mice. J Funct Foods. doi: 10.1016/j.jff.2020.104215.
  29. Walter, L. et al. (2020). Matrix metalloproteinase 9 (MMP9) limits reactive oxygen species (ROS) accumulation and DNA damage in colitis-associated cancer. Cell Death Dis. 11(9):767. doi: 10.1038/s41419-020-02959-z.
  30. Langbøl, M. et al. (2020). Increased Antioxidant Capacity and Pro-Homeostatic Lipid Mediators in Ocular Hypertension-A Human Experimental Model. J Clin Med. 9(9):E2979. doi: 10.3390/jcm9092979.