In Vitro ROS/RNS Assay

In Vitro ROS/RNS Assay
  • Measures total reactive oxygen species and reactive nitrogen species, including hydrogen peroxide, nitric oxide, peroxyl radical, and peroxynitrite anion
  • Suitable for use with serum, plasma, urine, cell lysates or cell culture supernatants
  • Detection sensitivity limit of 10 pM for DCF and 40 nM for hydrogen peroxide

 

Frequently Asked Questions about this product

General FAQs about Oxidative Stress

Email To BuyerPrint this PageCopy Link
Ordering

Please contact your distributor for pricing.

OxiSelect™ In Vitro ROS/RNS Assay Kit (Green Fluorescence)
Catalog Number
STA-347
Size
96 assays
Detection
Fluorometric
Manual/Data Sheet Download
SDS Download
Price
$495.00
OxiSelect™ In Vitro ROS/RNS Assay Kit (Green Fluorescence)
Catalog Number
STA-347-5
Size
5 x 96 assays
Detection
Fluorometric
Manual/Data Sheet Download
SDS Download
Price
$2,110.00
OxiSelect™ In Vitro ROS/RNS Assay Kit (Green Fluorescence), Trial Size
Catalog Number
STA-347-T
Size
20 assays
Detection
Fluorometric
Manual/Data Sheet Download
SDS Download
Price
$250.00
Product Details

The OxiSelect™ In Vitro ROS/RNS Assay provides a sensitive method to detect total reactive oxygen species (ROS) plus reactive nitrogen species (RNS) in a wide variety of sample types. This assay employs a proprietary fluorogenic probe, DCFH-DiOxyQ; the probe is primed with a dequenching reagent to the highly reactive DCFH form. In the presence of ROS and RNS, the DCFH is rapidly oxidized to the highly fluorescent DCF.

Assay Principle.

Hydrogen Peroxide Standard Curve.

Detection of Various Free Radical Species. DCF fluorescence curves for AAPH (peroxyl radical generator), SIN-1 (peroxynitrite generator), and SNP (nitric oxide generator).

Recent Product Citations
  1. Baek, J.H. et al. (2020). Glutamine Supplementation Prevents Chronic Stress-Induced Mild Cognitive Impairment. Nutrients.12:910. doi: 10.3390/nu12040910.
  2. Lee, D.G. et al. (2020). Peroxiredoxin 5 deficiency exacerbates iron overload-induced neuronal death via ER-mediated mitochondrial fission in mouse hippocampus. Cell Death Dis. 11(3):204. doi: 10.1038/s41419-020-2402-7.
  3. Eid, R.A. et al. (2020). Exendin-4 Ameliorates Cardiac Remodeling in Experimentally Induced Myocardial Infarction in Rats by Inhibiting PARP1/NF-κB Axis in A SIRT1-Dependent Mechanism. Cardiovasc Toxicol. doi: 10.1007/s12012-020-09567-5.
  4. Eid, R.A. et al. (2020). Exendin-4 protects the hearts of rats from ischemia/reperfusion injury by boosting antioxidant levels and inhibition of JNK/p66 Shc/NADPH axis. Clin Exp Pharmacol Physiol. doi: 10.1111/1440-1681.13299.
  5. Ho, J. et al. (2020). Candidalysin Is a Potent Trigger of Alarmin and Antimicrobial Peptide Release in Epithelial Cells. Cells. 9:699. doi: 10.3390/cells9030699.
  6. Wu, S. et al. (2020). High-fat diet increased NADPH-oxidase-related oxidative stress and aggravated LPS-induced intestine injury. Life Sci. doi: 10.1016/j.lfs.2020.117539.
  7. Loeffler, H. et al. (2020). Comparison of Inflammatory Effects in THP-1 Monocytes and Macrophages after Exposure to Metal Ions. Materials. 13(5):1150. doi: 10.3390/ma13051150.
  8. Zhang, P. et al. (2020). Inhibition of Autophagy Signaling via 3-methyladenine Rescued Nicotine-Mediated Cardiac Pathological Effects and Heart Dysfunctions. Int J Biol Sci. 16(8):1349-1362. doi: 10.7150/ijbs.41275.
  9. Shao, A. et al. (2020). Chikusetsu saponin IVa alleviated sevoflurane-induced neuroinflammation and cognitive impairment by blocking NLRP3/caspase-1 pathway. Pharmacol Rep. doi: 10.1007/s43440-020-00078-2.
  10. Xu, Y. et al. (2020). Hepatocyte‐Specific Expression of Human Carboxylesterase 1 Attenuates Diet‐Induced Steatohepatitis and Hyperlipidemia in Mice. Hepatol Commun. doi: 10.1002/hep4.1487.
  11. Nicol, M.J. et al. (2020). Antibacterial effects of low-temperature plasma generated by atmospheric-pressure plasma jet are mediated by reactive oxygen species. Sci Rep. 10(1):3066. doi: 10.1038/s41598-020-59652-6.
  12. Opgenorth, J. et al. (2020). Colostrum supplementation with n-3 fatty acids and α-tocopherol alters plasma polyunsaturated fatty acid profile and decreases an indicator of oxidative stress in newborn calves. J Dairy Sci. doi: 10.3168/jds.2019-17380.
  13. Mijiritsky, E. et al. (2020). Albumin-impregnated bone granules modulate the interactions between mesenchymal stem cells and monocytes under in vitro inflammatory conditions. Mater Sci Eng. doi: 10.1016/j.msec.2020.110678.
  14. Shati, A.A. et al. (2020). Salidroside ameliorates diabetic nephropathy in rats by activating renal AMPK/SIRT1 signaling pathway. J Food Biochem. doi: 10.1111/jfbc.13158.
  15. Dongil, P. et al. (2020). PAS kinase deficiency reduces aging effects in mice. Aging (Albany NY). doi: 10.18632/aging.102745.
  16. Lee, H.K. et al. (2020). Targeted toxicometabolomics of endosulfan sulfate in adult zebrafish (Danio rerio) using GC-MS/MS in multiple reaction monitoring mode. J Hazard Mater. doi: 10.1016/j.jhazmat.2020.122056.
  17. Liu, D. et al. (2020). Antioxidative, histological and immunological responses of rainbow trout after periodic and continuous exposures to a peracetic acid-based disinfectant. Aquaculture. 520:734956. doi: 10.1016/j.aquaculture.2020.734956.
  18. Ku, J.Y. et al. (2020). Combination of Korean Red Ginseng Extract and Hydrogen-Rich Water Improves Spermatogenesis and Sperm Motility in Male Mice. Chin J Integr Med. doi: 10.1007/s11655-019-3047-1.
  19. Lee, D.K. et al. (2020). Aggravation of atherosclerosis by pulmonary exposure to indium oxide nanoparticles. Nanotoxicology. doi: 10.1080/17435390.2019.1704590.
  20. Shati, A.A. (2019). Doxorubicin-induces NFAT/Fas/FasL cardiac apoptosis in rats through activation of calcineurin and P38 MAPK and inhibition of mTOR signaling pathways. Clin Exp Pharmacol Physiol. doi: 10.1111/1440-1681.13225.
  21. Albornoz, R.I. et al. (2019). Diet starch concentration and starch fermentability affect markers of inflammatory response and oxidant status in dairy cows during the early postpartum period. J Dairy Sci. pii: S0022-0302(19)31015-X. doi: 10.3168/jds.2019-16398.
  22. Orita, K. et al. (2019). Ameliorative Effect of Hochu-ekki-to on Natural Skin Aging. Pharmacology. doi: 10.1159/000504985.
  23. Kim, J. et al. (2019). Protective effect of Prunella vulgaris var. L extract against blue light induced damages in ARPE-19 cells and mouse retina. Free Radic Biol Med. pii: S0891-5849(19)31257-2. doi: 10.1016/j.freeradbiomed.2019.12.003.
  24. El-Kott, A.F. et al. (2019). Kaempferol Protects Against Cadmium Chloride-Induced Memory Loss and Hippocampal Apoptosis by Increased Intracellular Glutathione Stores and Activation of PTEN/AMPK Induced Inhibition of Akt/mTOR Signaling. Neurochem Res. doi: 10.1007/s11064-019-02911-4.
  25. Syeda, M.Z. et al. (2019). Anthocyanidin attenuates myocardial ischemia induced injury via inhibition of ROS-JNK-Bcl-2 pathway: New mechanism of anthocyanidin action. Phytother Res. 33(12):3129-3139. doi: 10.1002/ptr.6485.
  26. Karna, K.K. et al. (2019). The ameliorative effect of monotropein, astragalin, and spiraeoside on oxidative stress, endoplasmic reticulum stress, and mitochondrial signaling pathway in varicocelized rats. BMC Complement Altern Med. 19(1):333. doi: 10.1186/s12906-019-2736-9.
  27. Crookenden, M.A. et al. (2019). Feeding synthetic zeolite to transition dairy cows alters neutrophil gene expression. J Dairy Sci. pii: S0022-0302(19)30933-6. doi: 10.3168/jds.2019-17097.
  28. Zhu, Y. et al. (2019). Dynamic Regulation of ME1 Phosphorylation and Acetylation Affects Lipid Metabolism and Colorectal Tumorigenesis. Mol Cell. pii: S1097-2765(19)30793-2. doi: 10.1016/j.molcel.2019.10.015.
  29. Lv, P. et al. (2019). Dexmedetomidine Attenuates Orthotopic Liver Transplantation-Induced Acute Gut Injury via α2-Adrenergic Receptor-Dependent Suppression of Oxidative Stress. Oxid Med Cell Longev. doi: 10.1155/2019/9426368.
  30. Pejman, S. et al. (2019). Ac-SDKP ameliorates the progression of experimental autoimmune encephalomyelitis via inhibition of ER stress and oxidative stress in the hippocampus of C57BL/6 mice. Brain Res Bull. pii: S0361-9230(19)30425-3. doi: 10.1016/j.brainresbull.2019.09.014.