Total Antioxidant Capacity (TAC) Assay

Total Antioxidant Capacity (TAC) Assay
  • Measures total antioxidant capacity based on reduction of copper(II) to copper(I)
  • Suitable for use with plasma, serum, urine, cell lysates, tissue homogenates and food extracts
  • Works with a wide variety of antioxidants


Frequently Asked Questions about this product

General FAQs about Oxidative Stress

Email To BuyerPrint this PageCopy Link

Please contact your distributor for pricing.

OxiSelect™ Total Antioxidant Capacity (TAC) Assay Kit
Catalog Number
200 assays
Manual/Data Sheet Download
SDS Download
Product Details

The OxiSelect™ Total Antioxidant Capacity (TAC) Assay measures the total antioxidant capacity of biomolecules from a variety of samples via a SET mechanism. In the presence of antioxidants, copper(II) is reduced to copper(I). In turn, the copper(I) ions react with a chromogen to produce a color with maximum absorbance at 490nm.

TAC Assay Principle.

TAC Assay Standard Curve.

TAC Assay Measurement with Various Antioxidants.

Recent Product Citations
  1. Cruz-Chamorro, I. et al. (2022). Alcoholic fermentation with Pichia kluyveri could improve the melatonin bioavailability of orange juice. J Funct Foods. doi: 10.1016/j.jff.2022.105325.
  2. Galiñanes, M. et al. (2022). Oxidative Stress in Structural Valve Deterioration: A Longitudinal Clinical Study. Biomolecules. 12(11):1606. doi: 10.3390/biom12111606.
  3. Afsar, T. et al. (2022). Prevention of Testicular Damage by Indole Derivative MMINA via Upregulated StAR and CatSper Channels with Coincident Suppression of Oxidative Stress and Inflammation: In Silico and In Vivo Validation. Antioxidants (Basel). 11(10):2063. doi: 10.3390/antiox11102063.
  4. Sangüesa, G. et al. (2022). Intense long-term training impairs brain health compared with moderate exercise: Experimental evidence and mechanisms. Ann N Y Acad Sci. doi: 10.1111/nyas.14912.
  5. Lee, J.H. et al. (2022). Evaluation of tryptophan biomass as an alternative to conventional crystalline tryptophan in broiler diets. J Appl Poult Res. doi: 10.1016/j.japr.2022.100302.
  6. Aldret, R.L. et al. (2022). The Acute Effects of a Maple Water Drink on Exercise Responses, Oxidative Stress and Inflammation in Overweight College Males. J. Food Nutr. Res. 10(9):593-599. doi: 10.12691/jfnr-10-9-2.
  7. Tascón, J. et al. (2022). Early Diagnosis of Kidney Damage Associated with Tobacco Use: Preventive Application. J Pers Med. 12(7):1032. doi: 10.3390/jpm12071032.
  8. Santos-Sánchez, G. et al. (2022). Bioactive Peptides from Lupin (Lupinus angustifolius) Prevent the Early Stages of Atherosclerosis in Western Diet-Fed ApoE-/- Mice. J Agric Food Chem. 70(27):8243-8253. doi: 10.1021/acs.jafc.2c00809.
  9. Abd El-Motelp, B.A. (2022). Synergistic Therapeutic Effect of L-Carnitine Nanoparticles and Moringa Oleifera Against Doxorubicin Induced Cardiac Toxicity in Male Rats: Biochemical and Histological Study. Biointerface Res Appl Chem. doi: 10.33263/BRIAC132.142.
  10. Rodríguez-Pérez, M.D. et al. (2022). Neuroprotective Effect of 3',4'-Dihydroxyphenylglycol in Type-1-like Diabetic Rats-Influence of the Hydroxytyrosol/3',4'-dihydroxyphenylglycol Ratio. Nutrients. 14(6):1146. doi: 10.3390/nu14061146.
  11. Giri, T. et al. (2022). Labor induction with oxytocin in pregnant rats is not associated with oxidative stress in the fetal brain. Sci Rep. 12(1):3143. doi: 10.1038/s41598-022-07236-x.
  12. Lee, H. et al. (2022). The potential inhibitory effect of ginsenoside Rh2 on mitophagy in UV-irradiated human dermal fibroblasts. J Ginseng Res. doi: 0.1016/j.jgr.2022.02.001.
  13. Tignat-Perrier, R. et al. (2022). The effect of thermal stress on the physiology and bacterial communities of two key Mediterranean gorgonians. Appl Environ Microbiol. doi: 10.1128/aem.02340-21.
  14. Forsse, J.S. et al. (2022). The Influence of an Acute Bout of Aerobic Exercise on Vascular Endothelial Function in Moderate Stages of Chronic Kidney Disease. Life (Basel). 12(1):91. doi: 10.3390/life12010091.
  15. Al-Saleh, I. et al. (2022). Essential metals, vitamins and antioxidant enzyme activities in COVID-19 patients and their potential associations with the disease severity. Biometals. doi: 10.1007/s10534-021-00355-4.
  16. Gagan, J.M. et al. (2021). Constitutive transgenic alpha-Klotho overexpression enhances resilience to and recovery from murine acute lung injury. Am J Physiol Lung Cell Mol Physiol. doi: 10.1152/ajplung.00629.2020.
  17. Olejnik, A. et al. (2021). The Klotho protein supports redox balance and metabolic functions of cardiomyocytes during ischemia/reperfusion injury. Cardiol J. doi: 10.5603/CJ.a2021.0174.
  18. De La Cruz Cortés, J.P. et al. (2021). Synergistic Effect of 3′,4′-Dihidroxifenilglicol and Hydroxytyrosol on Oxidative and Nitrosative Stress and Some Cardiovascular Biomarkers in an Experimental Model of Type 1 Diabetes Mellitus. Antioxidants. 10(12):1983. doi: 10.3390/antiox10121983.
  19. Oladokun, S. et al. (2021). Essential Oil Delivery Route: Effect on Broiler Chicken’s Growth Performance, Blood Biochemistry, Intestinal Morphology, Immune, and Antioxidant Status. Animals. 11(12):3386. doi: 10.3390/ani11123386.
  20. Drobnic, F. et al. (2021). Krill-Oil-Dependent Increases in HS-Omega-3 Index, Plasma Choline and Antioxidant Capacity in Well-Conditioned Power Training Athletes. Nutrients. 13(12):4237. doi: 10.3390/nu13124237.
  21. Sayed, W.M. (2021). Quercetin Alleviates Red Bull Energy Drink-Induced Cerebral Cortex Neurotoxicity via Modulation of Nrf2 and HO-1. Oxid Med Cell Longev. 2021:9482529. doi: 10.1155/2021/9482529.
  22. Lee, D. & Choi, J.I. et al. (2021). Hydrogen-Rich Water Improves Cognitive Ability and Induces Antioxidative, Antiapoptotic, and Anti-Inflammatory Effects in an Acute Ischemia-Reperfusion Injury Mouse Model. Biomed Res Int. 2021:9956938. doi: 10.1155/2021/9956938.
  23. Lean, S.C. et al. (2021). A prospective cohort study providing insights for markers of adverse pregnancy outcome in older mothers. BMC Pregnancy Childbirth. 21(1):706. doi: 10.1186/s12884-021-04178-6.
  24. Ojong, E.W. et al. (2021). Assessment of plasma antioxidant capacity and oxidative stress in HIV/AIDS patients in Calabar, Nigeria. Sci Afr. doi: 1016/j.sciaf.2021.e01017.
  25. Lingens, J.B. et al. (2021). Evaluation of Methionine Sources in Protein Reduced Diets for Turkeys in the Late Finishing Period Regarding Performance, Footpad Health and Liver Health. Agriculture. 11(9):901. doi: 10.3390/agriculture11090901.
  26. Ahmed-Farid, O.A. et al. (2021). Effects of Chronic Thermal Stress on Performance, Energy Metabolism, Antioxidant Activity, Brain Serotonin, and Blood Biochemical Indices of Broiler Chickens. Animals (Basel). 11(9):2554. doi: 10.3390/ani11092554.
  27. Saber, T.M. et al. (2021). Early postmortem biochemical, histological, and immunohistochemical alterations in skeletal muscles of rats exposed to boldenone undecylenate: Forensic implication. J Forensic Leg Med. 83:102248. doi: 10.1016/j.jflm.2021.102248.
  28. Tembo, M.C. et al. (2021). The Predictability of Frailty Associated with Musculoskeletal Deficits: A Longitudinal Study. Calcif Tissue Int. doi: 10.1007/s00223-021-00865-w.
  29. Delos Reyes, J.B. et al. (2021). Effects of dietary supplementation of vitamin C on productive performance, egg quality, tibia characteristics and antioxidant status of laying hens. Livest Sci. doi: 10.1016/j.livsci.2021.104502.
  30. Tembo, M.C. et al. (2021). Association between serum interleukin-6 and frailty in older men: cross-sectional data. Eur Geriatr Med. doi: 10.1007/s41999-021-00490-8.