Trolox Equivalent Antioxidant Capacity (TEAC) Assay

Trolox Equivalent Antioxidant Capacity (TEAC) Assay
  • Measures total antioxidant capacity based on conversion of ABTS radical to ABTSW
  • Suitable for use with plasma, serum, urine, cell lysates, tissue homogenates and food extracts
  • Works with a wide variety of antioxidants

 

General FAQs about Oxidative Stress

Email To BuyerPrint this PageCopy Link
Ordering

Please contact your distributor for pricing.

OxiSelect™ Trolox Equivalent Antioxidant Capacity (TEAC) Assay Kit (ABTS)
Catalog Number
XAN-5040
Size
200 assays
Detection
Colorimetric
Manual/Data Sheet Download
SDS Download
Price
$435.00
Product Details

The OxiSelect™ Trolox Equivalent Antioxidant Capacity (TEAC) Assay measures the total antioxidant capacity of biomolecules from a variety of samples via a SET or HAT mechanism. In the presence of antioxidants, the oxidized ABTS radical is reduced to ABTS in a concentration dependent manner. Activities of samples are compared to that of Trolox, a water-soluble vitamin E analog.

TAC Assay Principle.

TAC Assay Standard Curve.

TAC Assay Measurement with Various Antioxidants.

Recent Product Citations
  1. Núñez-Robainas, A. et al. (2026). Systemic Inflammation and Oxidative Stress in Bronchiectasis-Associated Sarcopenia. ERJ Open Res. doi: 10.1183/23120541.00556-2025.
  2. Frangipane, M.T. et al. (2025). Characterizing the Antioxidant Activity, Fatty Acids, and Sensory Profile of Eight Extra Virgin Olive Oils With Protected Designation of Origin (PDO) From Lazio (Italy): A Pilot Study. Eur. J. Lipid Sci. Technol. doi: 10.1002/ejlt.70014.
  3. Frangipane, M. T. et al. (2025). Exploring the Sensory and Volatile Profiles Associated with the Antioxidant Activity of Monovarietal Extra Virgin Olive Oil of the Leccio Del Corno Cultivar with Remarkable Resistance to the Bacterium Xylella fastidiosa. Agriculture. 15(6):619. doi: 10.3390/agriculture15060619.
  4. Costantini, L. et al. (2025). Hazelnut Skin Fortification of Dehulled Lentil Chips to Improve Nutritional, Antioxidant, Sensory, and Chemical Properties. Foods. 14(4):683. doi: 10.3390/foods14040683.
  5. Frusciante, L. et al. (2025). Enhancing Industrial Hemp (Cannabis sativa) Leaf By-Products: Bioactive Compounds, Anti-Inflammatory Properties, and Potential Health Applications. Int J Mol Sci. 26(2):548. doi: 10.3390/ijms26020548.
  6. Lange, A. et al. (2024). Impaired Biofilm Development on Graphene Oxide-Metal Nanoparticle Composites. Nanotechnol Sci Appl. 17:303-320. doi: 10.2147/NSA.S485841.
  7. Tran, M.T. et al. (2024). A Paper-Based Assay for the Determination of Total Antioxidant Capacity in Human Serum Samples. Biosensors (Basel). 14(11):559. doi: 10.3390/bios14110559.
  8. Frusciante, L. et al. (2024). Exploring the Antioxidant and Anti-Inflammatory Potential of Saffron (Crocus sativus) Tepals Extract within the Circular Bioeconomy. Antioxidants. 13(9):1082. doi: 10.3390/antiox13091082.
  9. Frusciante, L. et al. (2024). Repurposing Castanea sativa Spiny Burr By-Products Extract as a Potentially Effective Anti-Inflammatory Agent for Novel Future Biotechnological Applications. Life (Basel). 14(6):763. doi: 10.3390/life14060763.
  10. Farinon, B. et al. (2024). Tomato pomace food waste from different variants as a high antioxidant potential resource. Food Chem. doi: 10.1016/j.foodchem.2024.139509.
  11. Frangipane, M.T. et al. (2024). Characterizing the antioxidant activity and sensory profile of chestnuts (Castanea sativa Mill.) grown in the Cimini Mountains of central Italy. J Agric Food Res. doi: 10.1016/j.jafr.2024.101113.
  12. Taiti, C. et al. (2024). Detection of Secondary Metabolites, Proximate Composition and Bioactivity of Organic Dried Spirulina (Arthrospira platensis). Applied Sciences. 14(1):67. doi: 10.3390/app14010067.
  13. Elhassaneen, Y. A. et al. (2023). Influence of Novel Freezing and Storage Technology on Nutrient Contents, Bioactive Compounds and Antioxidant Capacity of Black Eggplant. Journal of Agriculture and Crops. 93:338–352. doi: 10.32861/jac.93.338.352.
  14. Pérez-Peiró, M. et al. (2023). Nitrosative and Oxidative Stress, Reduced Antioxidant Capacity, and Fiber Type Switch in Iron-Deficient COPD Patients: Analysis of Muscle and Systemic Compartments. Nutrients. 15(6):1454. doi: 10.3390/nu15061454.
  15. Qin, L. et al. (2021). Systemic Profiles of microRNAs, Redox Balance, and Inflammation in Lung Cancer Patients: Influence of COPD. Biomedicines. 9(10):1347. doi: 10.3390/biomedicines9101347.
  16. Nallan Chakravartula, S.S. et al. (2021). Stinging Nettles as Potential Food Additive: Effect of Drying Processes on Quality Characteristics of Leaf Powders. Foods. 10(6):1152. doi: 10.3390/foods10061152.