8 µm Chemotaxis Assays, 96-Well Format

8 µm Chemotaxis Assays, 96-Well Format
  • Fully quantify chemotaxis with no manual cell counting
  • Measure chemotaxis in less than 6 hours with most cell types
  • Membrane inserts are uncoated to allow use with any chemoattractant
  • Detection with fluorescence plate reader


Frequently Asked Questions about this product

General FAQs about Chemotaxis Assays

Email To BuyerPrint this PageCopy Link

Please contact your distributor for pricing.

CytoSelect™ 96-Well Cell Migration Assay, 8 µm
Catalog Number
96 assays
Manual/Data Sheet Download
SDS Download
CytoSelect™ 96-Well Cell Migration Assay, 8 µm
Catalog Number
5 x 96 assays
Manual/Data Sheet Download
SDS Download
Product Details

Chemotaxis describes the movement of cells toward or away from a chemical stimulus in their enviroment. Cell chemotaxis plays a pivotal role in the progression of cancer and other diseases.

CytoSelect™ Cell Migration Assays are ideal for determining the chemotactic properties of cells. The 8 µm pore size is suitable for most cell types including epithelial cells, fibroblasts, and cancer cell lines.

CytoSelect™ Chemotaxis Assay Principle. Migratory cells move through the polycarbonate membrane toward a chemoattractant underneath the membrane inserts.

Recent Product Citations
  1. Yi, S.W. et al. (2021). Dilation-Responsive Microshape Programing Prevents Vascular Graft Stenosis. Small. doi: 10.1002/smll.202007297.
  2. Avolio, E. et al. (2020).  Secreted Protein Acidic and Cysteine Rich Matricellular Protein Is Enriched in the Bioactive Fraction of the Human Vascular Pericyte Secretome. Antioxid Redox Signal. doi: 10.1089/ars.2019.7969.
  3. Ma, L. et al. (2020). Targeted MEK inhibition by cobimetinib enhances doxorubicin’s efficacy in osteosarcoma models. Biochem Biophys Res Commun. 529(3):622-628. doi: 10.1016/j.bbrc.2020.06.082.
  4. Vílchez, J.I. et al. (2020). DNA demethylases are required for myo-inositol-mediated mutualism between plants and beneficial rhizobacteria. Nat Plants. doi: 10.1038/s41477-020-0707-2.
  5. Ntogwa, M. et al. (2020). Schwann cell-derived CXCL1 contributes to human immunodeficiency virus type 1 gp120-induced neuropathic pain by modulating macrophage infiltration in mice. Brain Behav Immun. doi: 10.1016/j.bbi.2020.03.027.
  6. Umezu, K. et al. (2020). Stromal cell-derived factor 1 regulates in vitro sperm migration towards the cumulus-oocyte complex in cattle. PLoS One. 15(4):e0232536. doi: 10.1371/journal.pone.0232536.
  7. Morcillo, R.J. et al. (2019). Rhizobacterium-derived diacetyl modulates plant immunity in a phosphate-dependent manner. EMBO J. doi: 10.15252/embj.2019102602.
  8. Sakurai, K. et al. (2019). CD36 expression on oral squamous cell carcinoma cells correlates with enhanced proliferation and migratory activity. Oral Dis. doi: 10.1111/odi.13210.
  9. Anitua, E. et al. (2019). A novel protein-based autologous topical serum for skin regeneration. J Cosmet Dermatol. doi: 10.1111/jocd.13075.
  10. Muraguchi, T. et al. (2019). IGF-1R deficiency in human keratinocytes disrupts epidermal homeostasis and stem cell maintenance. Journal of Dermatological Science. doi:10.1016/j.jdermsci.2019.05.001.
  11. Tian, S. et al. (2018). The prognostic roles of circulating ALDH1+ tumor cell in the patients with non-small cell lung cancer. Biosci Rep. 38(5). pii: BSR20180914. doi: 10.1042/BSR20180914.
  12. Li, Z. et al. (2018). The transcriptional coactivator WBP2 primes triple-negative breast cancer cells for responses to Wnt signaling via the JNK/Jun kinase pathway. J Biol Chem. 293(52):20014-20028. doi: 10.1074/jbc.RA118.005796.
  13. Fedyakova, E. et al. (2018). An autologous protein gel for soft tissue augmentation: in vitro characterization and clinical evaluation. J Cosmet Dermatol. doi: 10.1111/jocd.12771.
  14. Zhang, M. et al. (2018). AIBP reduces atherosclerosis by promoting reverse cholesterol transport and ameliorating inflammation in apoE-/- mice. Atherosclerosis. 273:122-130. doi: 10.1016/j.atherosclerosis.2018.03.010.
  15. Chen, H. et al. (2017). The Exonization and Functionalization of an Alu-J Element in the Protein Coding Region of Glycoprotein Hormone Alpha Gene Represent a Novel Mechanism to the Evolution of Hemochorial Placentation in Primates. Mol Biol Evol. 34(12):3216-3231. doi: 10.1093/molbev/msx252.
  16. Barazeghi, E. et al. (2017). A role for TET2 in parathyroid carcinoma. Endocr. Relat. Cancer. 24(7):329-336. doi: 10.1530/ERC-17-0009.
  17. Jung, H-S. et al (2017). Monoclonal antibodies against autocrine motility factor suppress gastric cancer. Oncology Letters. 13 (6): 4925-4932.
  18. Ben-David, U. et al. (2016). The landscape of chromosomal aberrations in breast cancer mouse models reveals driver-specific routes to tumorigenesis. Nat Commun. doi:10.1038/ncomms12160.
  19. Adam, M. G. et al. (2015). SIAH ubiquitin ligases regulate breast cancer cell migration and invasion independent of the oxygen status. Cell Cycle. 14:3734-3747.
  20. Ranchoux, B. et al. (2015). Endothelial-to-Mesenchymal Transition in Pulmonary Hypertension. Circulation. 131:1006-1018.
  21. Li, X. et al. (2013). Activation of thromboxane A2 receptor (TP) increases the expression of monocyte chemoattractant protein -1 (MCP-1)/chemokine (C-C motif) ligand 2 (CCL2) and recruits macrophages to promote invasion of lung cancer cells. PLoS One. 8(1):e54073. doi: 10.1371/journal.pone.0054073.
  22. Hamed, S. et al. (2010). Hyperglycemia and oxidized-LDL exert a deleterious effect on endothelial progenitor cell migration in type 2 diabetes mellitus.Thromb Res. 126:166-174.
  23. Rosenblum, S. et al. (2012). Timing of Intra-Arterial Neural Stem Cell Transplantation After Hypoxia–Ischemia Influences Cell Engraftment, Survival, and Differentiation. Stroke. 43:1624-1631.
  24. Aftab, B.T. et al. (2011). Itraconazole Inhibits Angiogenesis and Tumor Growth in Non-Small Cell Lung Cancer. Cancer Res. 71:6764-6772. 
  25. Andres, R.H. et al. (2011). The CCR2/CCL2 Interaction Mediates the Transendothelial Recruitment of Intravascularly Delivered Neural Stem Cells to the Ischemic Brain. Stroke 42:2923-2931.
  26. Saher, H. et al. (2010). Red wine Consumption Improves in Vitro Migration of Endothelial Progenitor Cells in Young, Healthy Individuals. Am. J. Clinical Nutrition. 92:161-169.
  27. Zhao, L. et al. (2008). CD44 Expressed on Both Bone Marrow-Derived and Non-Bone Marrow-Derived Cells Promotes Atherogenesis in ApoE-Deficient Mice. Arterioscler. Thromb. Vasc. Biol. 28:1283-1289.
  28. Beattie, A.J. et al. (2008). Chemoattraction of Progenitor Cells by Remodeling Extracellular Matrix Scaffolds. Tissue Eng. Part A 10.1089/ten.tea.2008.0162.